

Introduction

[image: Documentation Status]
 [https://circuitpython-nrf24l01.readthedocs.io/][image: Build Status]
 [https://travis-ci.org/2bndy5/CircuitPython_nRF24L01][image: latest version on PyPI]
 [https://pypi.python.org/pypi/circuitpython-nrf24l01][image: Total PyPI downloads]
 [https://pepy.tech/project/circuitpython-nrf24l01]Circuitpython driver library for the nRF24L01 transceiver

CircuitPython port of the nRF24L01 library from Micropython.
Original work by Damien P. George & Peter Hinch can be found here [https://github.com/micropython/micropython/tree/master/drivers/nrf24l01]

The Micropython source has been rewritten to expose all the nRF24L01’s features and for
compatibilty with the Raspberry Pi and other Circuitpython compatible devices. Modified by Brendan Doherty, Rhys Thomas

	Author(s): Damien P. George, Peter Hinch, Rhys Thomas, Brendan Doherty

Features currently supported

	change the addresses’ length (can be 3 to 5 bytes long)

	dynamically sized payloads (max 32 bytes each) or statically sized payloads

	automatic responding acknowledgment (ACK) for verifying transmission success

	custom acknowledgment (ACK) payloads for bi-directional communication

	flag a single payload for no acknowledgment (ACK) from the receiving nRF24L01

	“re-use the same payload” feature (for manually re-transmitting failed transmissions that remain in the buffer)

	multiple payload transmissions with one function call (MUST read documentation on the send() function)

	context manager compatible for easily switching between different radio configurations using “with” statements

	configure the interrupt (IRQ) pin to trigger (active low) on received, sent, and/or failed transmissions (these 3 flags control the 1 IRQ pin). There’s also virtual representations of these interrupt flags available (see irq_DR, irq_DS, irq_DF attributes)

	invoke sleep mode (AKA power down mode) for ultra-low current consumption

	cyclic redundancy checking (CRC) up to 2 bytes long

	adjust the nRF24L01’s builtin automatic re-transmit feature’s parameters (arc: number of attempts, ard: delay between attempts)

	adjust the nRF24L01’s frequency channel (2.4-2.525 GHz)

	adjust the nRF24L01’s power amplifier level (0, -6, -12, or -18 dBm)

	adjust the nRF24L01’s RF data rate (250Kbps is buggy due to hardware design, but 1Mbps and 2Mbps are reliable)

	a nRF24L01 driven by this library can communicate with a nRF24L01 on an Arduino driven by the TMRh20 RF24 library [http://tmrh20.github.io/RF24/]. See the nrf24l01_2arduino_handling_data.py code in the examples folder of this library’s repository

Features currently unsupported

	as of yet, no [intended] implementation for Multiceiver mode (up to 6 TX nRF24L01 “talking” to 1 RX nRF24L01 simultaneously). Although this might be acheived easily using the “automatic retry delay” (ard) and “automatic retry count” (arc) attributes set accordingly (varyingly high – this has not been tested).

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

	Bus Device [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/circuitpython-nrf24l01/]. To install for current user:

pip3 install circuitpython-nrf24l01

To install system-wide (this may be required in some cases):

sudo pip3 install circuitpython-nrf24l01

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install circuitpython-nrf24l01

Pinout

[image: _images/198c91ca675849ebacbcb17285f0b2dd7ea32d3c.png]
 [https://lastminuteengineers.com/nrf24l01-arduino-wireless-communication/#nrf24l01-transceiver-module-pinout]The nRF24L01 is controlled through SPI so there are 3 pins (SCK, MOSI, & MISO) that can only be connected to their counterparts on the MCU (microcontroller unit). The other 2 essential pins (CE & CSN) can be connected to any digital output pins. Lastly, the only optional pin on the nRf24L01 GPIOs is the IRQ (interrupt; a digital output that’s active when low) pin and is only connected to the MCU via a digital input pin during the interrupt example. The following pinout is used in the example codes of this library’s example directory [https://github.com/2bndy5/CircuitPython_nRF24L01/tree/master/examples].

	nRF24L01

	Raspberry Pi

	ItsyBitsy M4

	GND

	GND

	GND

	VCC

	3V

	3.3V

	CE

	GPIO4

	D4

	CSN

	GPIO5

	D5

	SCK

	GPIO11 (SCK)

	SCK

	MOSI

	GPIO10 (MOSI)

	MOSI

	MISO

	GPIO9 (MISO)

	MISO

	IRQ

	GPIO4

	D4

Tip

User reports and personal experiences have improved results if there is a capacitor of 100 mirofarads [+ another optional 0.1 microfarads capacitor for added stability] connected in parrallel to the VCC and GND pins.

Using The Examples

See examples [https://circuitpython-nrf24l01.readthedocs.io/en/latest/examples.html] for testing certain features of this the library. The examples were developed and tested on both Raspberry Pi and ItsyBitsy M4. Pins have been hard coded in the examples for the corresponding device, so please adjust these accordingly to your circuitpython device if necessary.

To run the simple example, navigate to this repository’s “examples” folder in the terminal. If you’re working with a CircuitPython device (not a Raspberry Pi), copy the file named “nrf24l01_simple_test.py” from this repository’s “examples” folder to the root directory of your CircuitPython device’s CIRCUITPY drive. Now you’re ready to open a python REPR and run the following commands:

>>> from nrf24l01_simple_test import *
 nRF24L01 Simple test
 Run slave() on receiver
 Run master() on transmitter
>>> master(3)
Sending: 3 as struct: b'\x03\x00\x00\x00'
send() succeessful
Transmission took 86.0 ms
Sending: 2 as struct: b'\x02\x00\x00\x00'
send() succeessful
Transmission took 109.0 ms
Sending: 1 as struct: b'\x01\x00\x00\x00'
send() succeessful
Transmission took 109.0 ms
these results were observed from a test on the Raspberry Pi 3
transmissions from a CircuitPython device took 32 to 64 ms

About the nRF24L01

Here are the features listed directly from the datasheet (referenced here in the documentation as the nRF24L01+ Specification Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf]):

Key Features:

	Worldwide 2.4GHz ISM band operation

	250kbps, 1Mbps and 2Mbps on air data rates

	Ultra low power operation

	11.3mA TX at 0dBm output power

	13.5mA RX at 2Mbps air data rate

	900nA in power down

	26μA in standby-I

	On chip voltage regulator

	1.9 to 3.6V supply range

	Enhanced ShockBurst™

	Automatic packet handling

	Auto packet transaction handling

	6 data pipe MultiCeiver™

	Drop-in compatibility with nRF24L01

	On-air compatible in 250kbps and 1Mbps with nRF2401A, nRF2402, nRF24E1 and nRF24E2

	Low cost BOM

	±60ppm 16MHz crystal

	5V tolerant inputs

	Compact 20-pin 4x4mm QFN package

Applications

	Wireless PC Peripherals

	Mouse, keyboards and remotes

	3-in-1 desktop bundles

	Advanced Media center remote controls

	VoIP headsets

	Game controllers

	Sports watches and sensors

	RF remote controls for consumer electronics

	Home and commercial automation

	Ultra low power sensor networks

	Active RFID

	Asset tracking systems

	Toys

Future Project Ideas/Additions using the nRF24L01 (not currently supported by this circuitpython library):

	There’s a few blog posts by Nerd Ralph demonstrating how to use the nRF24L01 via 2 or 3 pins [http://nerdralph.blogspot.com/2015/05/nrf24l01-control-with-2-mcu-pins-using.html] (uses custom bitbanging SPI functions and an external circuit involving a resistor and a capacitor)

	network linking layer, maybe something like TMRh20’s RF24Network [http://tmrh20.github.io/RF24Network/]

	add a fake BLE module for sending BLE beacon advertisments from the nRF24L01 as outlined by Dmitry Grinberg in his write-up (including C source code) [http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery]. We’ve started developing this, but fell short of success in the BLEfake branch of this library’s repository [https://github.com/2bndy5/CircuitPython_nRF24L01/tree/BLEfake]

Where do I get 1?

See the store links on the sidebar or just google “nRF24L01”. It is worth noting that you generally don’t want to buy just 1 as you need 2 for testing – 1 to send & 1 to receive and vise versa. This library has been tested on a cheaply bought 10 pack from Amazon.com using a highly recommended capacitor (100 µF) on the power pins. Don’t get lost on Amazon or eBay! There are other wireless transceivers that are NOT compatible with this library. For instance, the esp8266-01 (also sold in packs) is NOT compatible with this library, but looks very similar to the nRF24L01(+) and could lead to an accidental purchase.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/2bndy5/CircuitPython_nRF24L01/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming. To contribute, all you need to do is fork this repository [https://github.com/2bndy5/CircuitPython_nRF24L01.git], develop your idea(s) and submit a pull request when stable. To initiate a discussion of idea(s), you need only open an issue on the aforementioned repository (doesn’t have to be a bug report).

Sphinx documentation

Sphinx is used to build the documentation based on rST files and comments in the code. First,
install dependencies (feel free to reuse the virtual environment from above [https://circuitpython-nrf24l01.readthedocs.io/en/latest/#installing-from-pypi]):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-rtd-theme

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build/html

This will output the documentation to docs/_build/html. Open the index.html in your browser to
view them. It will also (due to -W) error out on any warning like Travis CI does. This is a good way to locally verify it will pass.

Table of Contents

Examples

	Simple test

	ACK Payloads Example

	IRQ Pin Example

	Stream Example

	Context Example

	Working with TMRh20’s Arduino library

API Reference

	RF24 class
	Basic API

	Advanced API

Store Links

	2.4GHz Transceiver IC - nRF24L01+ [https://www.sparkfun.com/products/690]

	SparkFun Transceiver Breakout - nRF24L01+ [https://www.sparkfun.com/products/691]

	SparkFun Transceiver Breakout - nRF24L01+ (RP-SMA) [https://www.sparkfun.com/products/705]

Other Links

	Download [https://github.com/2bndy5/CircuitPython_nRF24L01/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/nrf24l01_simple_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

	"""
Simple example of library usage.
"""
import time
import struct
import board
import digitalio as dio
from circuitpython_nrf24l01 import RF24

addresses needs to be in a buffer protocol object (bytearray)
address = b'1Node'

change these (digital output) pins accordingly
ce = dio.DigitalInOut(board.D4)
csn = dio.DigitalInOut(board.D5)

using board.SPI() automatically selects the MCU's
available SPI pins, board.SCK, board.MOSI, board.MISO
spi = board.SPI() # init spi bus object

we'll be using the dynamic payload size feature (enabled by default)
initialize the nRF24L01 on the spi bus object
nrf = RF24(spi, csn, ce)

def master(count=5): # count = 5 will only transmit 5 packets
 """Transmits an incrementing integer every second"""
 # set address of RX node into a TX pipe
 nrf.open_tx_pipe(address)
 # ensures the nRF24L01 is in TX mode
 nrf.listen = False

 while count:
 # use struct.pack to packetize your data
 # into a usable payload
 buffer = struct.pack('<i', count)
 # 'i' means a single 4 byte int value.
 # '<' means little endian byte order. this may be optional
 print("Sending: {} as struct: {}".format(count, buffer))
 now = time.monotonic() * 1000 # start timer
 result = nrf.send(buffer)
 if result is None:
 print('send() timed out')
 elif not result:
 print('send() failed')
 else:
 print('send() successful')
 # print timer results despite transmission success
 print('Transmission took',
 time.monotonic() * 1000 - now, 'ms')
 time.sleep(1)
 count -= 1

def slave(count=3):
 """Polls the radio and prints the received value. This method expires
 after 6 seconds of no received transmission"""
 # set address of TX node into an RX pipe. NOTE you MUST specify
 # which pipe number to use for RX, we'll be using pipe 0
 # pipe number options range [0,5]
 # the pipe numbers used during a transition don't have to match
 nrf.open_rx_pipe(0, address)
 nrf.listen = True # put radio into RX mode and power up

 start = time.monotonic()
 while count and (time.monotonic() - start) < 6:
 if nrf.any():
 # print details about the received packet (if any)
 print("Found {} bytes on pipe {}\
 ".format(repr(nrf.any()), nrf.pipe()))
 # retreive the received packet's payload
 rx = nrf.recv() # clears flags & empties RX FIFO
 # expecting an int, thus the string format '<i'
 buffer = struct.unpack('<i', rx)
 # print the only item in the resulting tuple from
 # using `struct.unpack()`
 print("Received: {}, Raw: {}".format(buffer[0], repr(rx)))
 start = time.monotonic()
 count -= 1
 # this will listen indefinitely till count == 0
 time.sleep(0.25)

 # recommended behavior is to keep in TX mode while idle
 nrf.listen = False # put the nRF24L01 is in TX mode

print("""\
 nRF24L01 Simple test.\n\
 Run slave() on receiver\n\
 Run master() on transmitter""")

ACK Payloads Example

This is a test to show how to use custom acknowledgment payloads.

examples/nrf24l01_ack_payload_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

	"""
Simple example of using the library to transmit
and retrieve custom automatic acknowledgment payloads.
"""
import time
import board
import digitalio as dio
from circuitpython_nrf24l01 import RF24

change these (digital output) pins accordingly
ce = dio.DigitalInOut(board.D4)
csn = dio.DigitalInOut(board.D5)

using board.SPI() automatically selects the MCU's
available SPI pins, board.SCK, board.MOSI, board.MISO
spi = board.SPI() # init spi bus object

we'll be using the dynamic payload size feature (enabled by default)
the custom ACK payload feature is disabled by default
the custom ACK payload feature should not be enabled
during instantiation due to its singular use nature
meaning 1 ACK payload per 1 RX'd payload
nrf = RF24(spi, csn, ce)

NOTE the the custom ACK payload feature will be enabled
automatically when you call load_ack() passing:
a buffer protocol object (bytearray) of
length ranging [1,32]. And pipe number always needs
to be an int ranging [0,5]

to enable the custom ACK payload feature
nrf.ack = True # False disables again

addresses needs to be in a buffer protocol object (bytearray)
address = b'1Node'

payloads need to be in a buffer protocol object (bytearray)
tx = b'Hello '

NOTE ACK payloads (like regular payloads and addresses)
need to be in a buffer protocol object (bytearray)
ACK = b'World '

def master(count=5): # count = 5 will only transmit 5 packets
 """Transmits a dummy payload every second and prints the ACK payload"""
 # recommended behavior is to keep in TX mode while idle
 nrf.listen = False # put radio in TX mode

 # set address of RX node into a TX pipe
 nrf.open_tx_pipe(address)

 while count:
 buffer = tx + bytes([count + 48]) # output buffer
 print("Sending (raw): {}".format(repr(buffer)))
 # to read the ACK payload during TX mode we
 # pass the parameter read_ack as True.
 nrf.ack = True # enable feature before send()
 now = time.monotonic() * 1000 # start timer
 result = nrf.send(buffer) # becomes the response buffer
 if result is None:
 print('send() timed out')
 elif not result:
 print('send() failed')
 else:
 # print the received ACK that was automatically
 # fetched and saved to "buffer" via send()
 print('raw ACK: {}'.format(repr(result)))
 # the ACK payload should now be in buffer
 # print timer results despite transmission success
 print('Transmission took',
 time.monotonic() * 1000 - now, 'ms')
 time.sleep(1)
 count -= 1

def slave(count=3):
 """Prints the received value and sends a dummy ACK payload"""
 # set address of TX node into an RX pipe. NOTE you MUST specify
 # which pipe number to use for RX, we'll be using pipe 0
 nrf.open_rx_pipe(0, address)

 # put radio into RX mode, power it up, and set the first
 # transmission's ACK payload and pipe number
 nrf.listen = True
 buffer = ACK + bytes([count + 48])
 # we must set the ACK payload data and corresponding
 # pipe number [0,5]
 nrf.load_ack(buffer, 0) # load ACK for first response

 start = time.monotonic()
 while count and (time.monotonic() - start) < (count * 2):
 if nrf.any():
 # this will listen indefinitely till count == 0
 count -= 1
 # print details about the received packet (if any)
 print("Found {} bytes on pipe {}\
 ".format(repr(nrf.any()), nrf.pipe()))
 # retreive the received packet's payload
 rx = nrf.recv() # clears flags & empties RX FIFO
 print("Received (raw): {}".format(repr(rx)))
 start = time.monotonic()
 if count: # Going again?
 # build new ACK
 buffer = ACK + bytes([count + 48])
 # load ACK for next response
 nrf.load_ack(buffer, 0)

 # recommended behavior is to keep in TX mode while idle
 nrf.listen = False # put radio in TX mode
 nrf.flush_tx() # flush any ACK payload

print("""\
 nRF24L01 ACK test\n\
 Run slave() on receiver\n\
 Run master() on transmitter""")

IRQ Pin Example

This is a test to show how to use nRF24L01’s interrupt pin.

examples/nrf24l01_interrupt_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105

	"""
Simple example of detecting (and verifying) the IRQ
interrupt pin on the nRF24L01
"""
import time
import board
import digitalio as dio
from circuitpython_nrf24l01 import RF24

address needs to be in a buffer protocol object (bytearray is preferred)
address = b'1Node'

select your digital input pin that's connected to the IRQ pin on the nRF4L01
irq = dio.DigitalInOut(board.D4)
irq.switch_to_input() # make sure its an input object
change these (digital output) pins accordingly
ce = dio.DigitalInOut(board.D4)
csn = dio.DigitalInOut(board.D5)

using board.SPI() automatically selects the MCU's
available SPI pins, board.SCK, board.MOSI, board.MISO
spi = board.SPI() # init spi bus object

we'll be using the dynamic payload size feature (enabled by default)
initialize the nRF24L01 on the spi bus object
nrf = RF24(spi, csn, ce)
nrf.arc = 15 # turn up automatic retries to the max. default is 3

def master(timeout=5): # will only wait 5 seconds for slave to respond
 """Transmits once, receives once, and intentionally fails a transmit"""
 # set address of RX node into a TX pipe
 nrf.open_tx_pipe(address)
 # ensures the nRF24L01 is in TX mode
 nrf.listen = 0

 # on data sent test
 print("Pinging: enslaved nRF24L01 without auto_ack")
 nrf.write(b'ping')
 time.sleep(0.00001) # mandatory 10 microsecond pulse starts transmission
 nrf.ce.value = 0 # end 10 us pulse; now in active TX
 while not nrf.irq_DS and not nrf.irq_DF:
 nrf.update() # updates the current status on IRQ flags
 if nrf.irq_DS and not irq.value:
 print('interrupt on data sent successful')
 else:
 print(
 'IRQ on data sent is not active, check your wiring and call interrupt_config()')
 nrf.clear_status_flags() # clear all flags for next test

 # on data ready test
 nrf.listen = 1
 nrf.open_rx_pipe(0, address)
 start = time.monotonic()
 while not nrf.any() and time.monotonic() - start < timeout: # wait for slave to send
 pass
 if nrf.any():
 print('Pong received')
 if nrf.irq_DR and not irq.value:
 print('interrupt on data ready successful')
 else:
 print(
 'IRQ on data ready is not active, check your wiring and call interrupt_config()')
 nrf.flush_rx()
 else:
 print('pong reception timed out!. make sure to run slave() on the other nRF24L01')
 nrf.clear_status_flags() # clear all flags for next test

 # on data fail test
 nrf.listen = False # put the nRF24L01 is in TX mode
 # the writing pipe should still be open since we didn't call close_tx_pipe()
 nrf.flush_tx() # just in case the previous "on data sent" test failed
 nrf.write(b'dummy') # slave isn't listening anymore
 time.sleep(0.00001) # mandatory 10 microsecond pulse starts transmission
 nrf.ce.value = 0 # end 10 us pulse; now in active TX
 while not nrf.irq_DS and not nrf.irq_DF: # these attributes don't update themselves
 nrf.update() # updates the current status on all IRQ flags (irq_DR, irq_DF, irq_DS)
 if nrf.irq_DF and not irq.value:
 print('interrupt on data fail successful')
 else:
 print(
 'IRQ on data fail is not active, check your wiring and call interrupt_config()')
 nrf.clear_status_flags() # clear all flags for next test

def slave(timeout=10): # will listen for 10 seconds before timing out
 """Acts as a ponging RX node to successfully complete the tests on the master"""
 # setup radio to recieve ping
 nrf.open_rx_pipe(0, address)
 nrf.listen = 1
 start = time.monotonic()
 while not nrf.any() and time.monotonic() - start < timeout:
 pass # nrf.any() also updates the status byte on every call
 if nrf.any():
 print("ping received. sending pong now.")
 else:
 print('listening timed out, please try again')
 nrf.flush_rx()
 nrf.listen = 0
 nrf.open_tx_pipe(address)
 nrf.send(b'pong') # send a payload to complete the on data ready test
 # we're done on this side

print("""\
 nRF24L01 Interrupt test\n\
 Run master() to run IRQ pin tests\n\
 Run slave() on the non-testing nRF24L01 to complete the test successfully""")

Stream Example

This is a test to show how to use the send() to transmit multiple payloads.

examples/nrf24l01_stream_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

	"""
Example of library usage for streaming multiple payloads.
"""
import time
import board
import digitalio as dio
from circuitpython_nrf24l01 import RF24

addresses needs to be in a buffer protocol object (bytearray)
address = b'1Node'

change these (digital output) pins accordingly
ce = dio.DigitalInOut(board.D4)
csn = dio.DigitalInOut(board.D5)

using board.SPI() automatically selects the MCU's
available SPI pins, board.SCK, board.MOSI, board.MISO
spi = board.SPI() # init spi bus object

we'll be using the dynamic payload size feature (enabled by default)
initialize the nRF24L01 on the spi bus object
nrf = RF24(spi, csn, ce)

lets create a list of payloads to be streamed to the nRF24L01 running slave()
buffers = []
SIZE = 32 # we'll use SIZE for the number of payloads in the list and the payloads' length
for i in range(SIZE):
 buff = b''
 for j in range(SIZE):
 buff += bytes([(j >= SIZE / 2 + abs(SIZE / 2 - i) or j <
 SIZE / 2 - abs(SIZE / 2 - i)) + 48])
 buffers.append(buff)
 del buff

def master(count=1): # count = 5 will transmit the list 5 times
 """Transmits a massive buffer of payloads"""
 # set address of RX node into a TX pipe
 nrf.open_tx_pipe(address)
 # ensures the nRF24L01 is in TX mode
 nrf.listen = False

 success_percentage = 0
 for _ in range(count):
 now = time.monotonic() * 1000 # start timer
 result = nrf.send(buffers)
 print('Transmission took', time.monotonic() * 1000 - now, 'ms')
 for r in result:
 success_percentage += 1 if r else 0
 success_percentage /= SIZE * count
 print('successfully sent', success_percentage * 100, '%')

def slave(timeout=5):
 """Stops listening after timeout with no response"""
 # set address of TX node into an RX pipe. NOTE you MUST specify
 # which pipe number to use for RX, we'll be using pipe 0
 # pipe number options range [0,5]
 # the pipe numbers used during a transition don't have to match
 nrf.open_rx_pipe(0, address)
 nrf.listen = True # put radio into RX mode and power up

 count = 0
 now = time.monotonic() # start timer
 while time.monotonic() < now + timeout:
 if nrf.any():
 count += 1
 # retreive the received packet's payload
 rx = nrf.recv() # clears flags & empties RX FIFO
 print("Received (raw): {} - {}".format(repr(rx), count))
 now = time.monotonic()

 # recommended behavior is to keep in TX mode while idle
 nrf.listen = False # put the nRF24L01 is in TX mode

print("""\
 nRF24L01 Stream test\n\
 Run slave() on receiver\n\
 Run master() on transmitter""")

Context Example

This is a test to show how to use “with” statements to manage multiple different nRF24L01 configurations on 1 transceiver.

examples/nrf24l01_context_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	"""
Simple example of library usage in context.
This will not transmit anything, but rather
display settings after changing contexts (& thus configurations)
"""
import board
import digitalio as dio
from circuitpython_nrf24l01 import RF24

change these (digital output) pins accordingly
ce = dio.DigitalInOut(board.D4)
csn = dio.DigitalInOut(board.D5)

using board.SPI() automatically selects the MCU's
available SPI pins, board.SCK, board.MOSI, board.MISO
spi = board.SPI() # init spi bus object

initialize the nRF24L01 objects on the spi bus object
nrf = RF24(spi, csn, ce, ack=True)
the first object will have all the features enabled
including the option to use custom ACK payloads

the second object has most features disabled/altered
disabled dynamic_payloads, but still using enabled auto_ack
the IRQ pin is configured to only go active on "data fail"
using a different channel: 2 (default is 76)
CRC is set to 1 byte long
data rate is set to 2 Mbps
payload length is set to 8 bytes
NOTE address length is set to 3 bytes
RF power amplifier is set to -12 dbm
automatic retry attempts is set to 15 (maximum allowed)
automatic retry delay (between attempts) is set to 1000 microseconds
basicRF = RF24(spi, csn, ce,
 dynamic_payloads=False, irq_DR=False, irq_DS=False,
 channel=2, crc=1, data_rate=2, payload_length=8,
 address_length=3, pa_level=-12, ard=1000, arc=15)

print("\nsettings configured by the nrf object")
with nrf:
 nrf.open_rx_pipe(5, b'1Node') # NOTE we do this inside the "with" block
 # only the first character gets written because it is on a pipe_number > 1
 # NOTE if opening pipes outside of the "with" block, you may encounter
 # conflicts in the differences between address_length attributes.
 # the address_length attribute must equal the length of addresses

 # display current settings of the nrf object
 nrf.what_happened(True) # True dumps pipe info

print("\nsettings configured by the basicRF object")
with basicRF as nerf: # the "as nerf" part is optional
 nerf.open_rx_pipe(2, b'SOS') # again only uses the first character
 nerf.what_happened(1)

if you examine the outputs from what_happened() you'll see:
pipe 5 is opened using the nrf object, but closed using the basicRF object.
pipe 2 is closed using the nrf object, but opened using the basicRF object.
this is because the "with" statements load the existing settings
for the RF24 object specified after the word "with".

the things that remain consistent despite the use of "with"
statements includes the power mode (standby or sleep), and
primary role (RX/TX mode)
NOTE this library uses the adresses' reset values and closes all pipes upon
instantiation

Working with TMRh20’s Arduino library

This test is meant to prove compatibility with the popular Arduino library for the nRF24L01 by TMRh20 (available for install via the Arduino IDE’s Library Manager). The following code has been designed/test with the TMRh20 library example named “GettingStarted_HandlingData.ino”.

examples/nrf24l01_2arduino_handling_data.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109

	"""
Example of library driving the nRF24L01 to communicate with a nRF24L01 driven by
the TMRh20 Arduino library. The Arduino program/sketch that this example was
designed for is named GettingStarted_HandlingData.ino and can be found in the "RF24"
examples after the TMRh20 library is installed from the Arduino Library Manager.
"""
import time
import struct
import board
import digitalio as dio
from circuitpython_nrf24l01 import RF24

addresses needs to be in a buffer protocol object (bytearray)
address = [b'1Node', b'2Node']

change these (digital output) pins accordingly
ce = dio.DigitalInOut(board.D4)
csn = dio.DigitalInOut(board.D5)

using board.SPI() automatically selects the MCU's
available SPI pins, board.SCK, board.MOSI, board.MISO
spi = board.SPI() # init spi bus object

initialize the nRF24L01 on the spi bus object
nrf = RF24(spi, csn, ce, ask_no_ack=False)
nrf.dynamic_payloads = False # this is the default in the TMRh20 arduino library

set address of TX node into a RX pipe
nrf.open_rx_pipe(1, address[1])
set address of RX node into a TX pipe
nrf.open_tx_pipe(address[0])

def master(count=5): # count = 5 will only transmit 5 packets
 """Transmits an arbitrary unsigned long value every second. This method
 will only try to transmit (count) number of attempts"""

 # for the "HandlingData" part of the test from the TMRh20 library example
 float_value = 0.01
 while count:
 nrf.listen = False # ensures the nRF24L01 is in TX mode
 print("Now Sending")
 start_timer = int(time.monotonic() * 1000) # start timer
 # use struct.pack to packetize your data into a usable payload
 # '<' means little endian byte order.
 # 'L' means a single 4 byte unsigned long value.
 # 'f' means a single 4 byte float value.
 buffer = struct.pack('<Lf', start_timer, float_value)
 result = nrf.send(buffer)
 if result is None:
 print('send() timed out')
 elif not result:
 print('send() failed')
 else:
 nrf.listen = True # get radio ready to receive a response
 timeout = True # used to determine if response timed out
 while time.monotonic() * 1000 - start_timer < 200:
 # the arbitrary 200 ms timeout value is also used in the TMRh20 example
 if nrf.any():
 end_timer = time.monotonic() * 1000 # end timer
 rx = nrf.recv()
 rx = struct.unpack('<Lf', rx[:8])
 timeout = False # skips timeout prompt
 # print total time to send and receive data
 print('Sent', struct.unpack('<Lf', buffer), 'Got Response:', rx)
 print('Round-trip delay:', end_timer - start_timer, 'ms')
 float_value = rx[1] # save float value for next iteration
 break
 if timeout:
 print("failed to get a response; timed out")
 count -= 1
 time.sleep(1)

def slave(count=3):
 """Polls the radio and prints the received value. This method expires
 after 6 seconds of no received transmission"""
 start_timer = time.monotonic()
 while count and (time.monotonic() - start_timer) < 6:
 nrf.listen = True # put radio into RX mode and power up
 if nrf.any():
 # retreive the received packet's payload
 buffer = nrf.recv() # clears flags & empties RX FIFO
 # increment floating value as part of the "HandlingData" test
 float_value = struct.unpack('<f', buffer[4:8])[0] + 0.01
 nrf.listen = False # ensures the nRF24L01 is in TX mode
 start_timer = time.monotonic() # in seconds
 # echo buffer[:4] appended with incremented float
 result = nrf.send(buffer[:4] + struct.pack('<f', float_value))
 end_timer = time.monotonic() * 1000 # in milliseconds
 # expecting an unsigned long & a float, thus the string format '<Lf'
 rx = struct.unpack('<Lf', buffer[:8]) # "[:8]" ignores the padded 0s
 # print the unsigned long and float data sent in the response
 print("Responding: {}, {}".format(rx[0], rx[1] + 0.01))
 if result is None:
 print('response timed out')
 elif not result:
 print('response failed')
 else:
 # print timer results on transmission success
 print('successful response took', end_timer - start_timer * 1000, 'ms')
 # this will listen indefinitely till counter == 0
 count -= 1
 # recommended behavior is to keep in TX mode when in idle
 nrf.listen = False # put the nRF24L01 in TX mode + Standby-I power state

print("""\
 nRF24L01 communicating with an Arduino running the\n\
 TMRh20 library's "GettingStarted_HandlingData.ino" example.\n\
 Run slave() on receiver\n\
 Run master() on transmitter""")

RF24 class

Important

The nRF24L01 has 3 key features that can be interdependent of each other. Their
priority of dependence is as follows:

	dynamic_payloads feature allowing either TX/RX nRF24L01 to be able to send/receive
payloads with their size written into the payloads’ packet. With this disabled, both RX/TX
nRF24L01 must use matching payload_length attributes.

	auto_ack feature provides transmission verification by using the RX nRF24L01 to
automatically and imediatedly send an acknowledgment (ACK) packet in response to freshly
received payloads. auto_ack does not require dynamic_payloads to be enabled.

	ack feature allows the MCU to append a payload to the ACK packet, thus instant
bi-directional communication. A transmitting ACK payload must be loaded into the nRF24L01’s
TX FIFO buffer (done using load_ack()) BEFORE receiving the payload that is to be
acknowledged. Once transmitted, the payload is released from the TX FIFO buffer. This
feature requires the auto_ack and dynamic_payloads features enabled.

Remeber that the nRF24L01’s FIFO (first-in,first-out) buffer has 3 levels. This means that there
can be up to 3 payloads waiting to be read (RX) and up to 3 payloads waiting to be transmit (TX).

With the auto_ack feature enabled you get:

	cycle redundancy checking (crc) automatically enabled

	to change amount of automatic re-transmit attempts and the delay time between them. See the
arc and ard attributes.

Note

A word on pipes vs addresses vs channels.

You should think of the data pipes as a vehicle that you (the payload) get into. Continuing the
analogy, the specified address is not the address of an nRF24L01 radio, rather it is more
like a route that connects the endpoints. There are only six data pipes on the nRF24L01,
thus it can simultaneously listen to a maximum of 6 other nRF24L01 radios (can only talk to
1 at a time). When assigning addresses to a data pipe, you can use any 5 byte long address
you can think of (as long as the last byte is unique among simultaneously broadcasting
addresses), so you’re not limited to communicating to the same 6 radios (more on this when
we support “Multiciever” mode). Also the radio’s channel is not be confused with the
radio’s pipes. Channel selection is a way of specifying a certain radio frequency
(frequency = [2400 + channel] MHz). Channel defaults to 76 (like the arduino library), but
options range from 0 to 125 – that’s 2.4 GHz to 2.525 GHz. The channel can be tweaked to
find a less occupied frequency amongst (Bluetooth & WiFi) ambient signals.

Warning

For successful transmissions, most of the endpoint trasceivers’ settings/features must
match. These settings/features include:

	The RX pipe’s address on the receiving nRF24L01 MUST match the TX pipe’s address on the
transmitting nRF24L01

	address_length

	channel

	data_rate

	dynamic_payloads

	payload_length only when dynamic_payloads is disabled

	auto_ack

	custom ack payloads

	crc

In fact the only attributes that aren’t required to match on both endpoint transceivers would
be the identifying data pipe number (passed to open_rx_pipe()), pa_level, arc, &
ard attributes. The ask_no_ack feature can be used despite the settings/features
configuration (see send() & write() function
parameters for more details).

Basic API

	
class circuitpython_nrf24l01.rf24.RF24(spi, csn, ce, channel=76, payload_length=32, address_length=5, ard=1500, arc=3, crc=2, data_rate=1, pa_level=0, dynamic_payloads=True, auto_ack=True, ask_no_ack=True, ack=False, irq_DR=True, irq_DS=True, irq_DF=True)

	A driver class for the nRF24L01(+) transceiver radios. This class aims to be compatible with
other devices in the nRF24xxx product line that implement the Nordic proprietary Enhanced
ShockBurst Protocol (and/or the legacy ShockBurst Protocol), but officially only supports
(through testing) the nRF24L01 and nRF24L01+ devices.

	Parameters

	
	spi (SPI [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI]) – The object for the SPI bus that the nRF24L01 is connected to.

Tip

This object is meant to be shared amongst other driver classes (like
adafruit_mcp3xxx.mcp3008 for example) that use the same SPI bus. Otherwise, multiple
devices on the same SPI bus with different spi objects may produce errors or
undesirable behavior.

	csn (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut]) – The digital output pin that is connected to the nRF24L01’s
CSN (Chip Select Not) pin. This is required.

	ce (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut]) – The digital output pin that is connected to the nRF24L01’s
CE (Chip Enable) pin. This is required.

	channel (int [https://docs.python.org/3.4/library/functions.html#int]) – This is used to specify a certain radio frequency that the nRF24L01 uses.
Defaults to 76 and can be changed at any time by using the channel attribute.

	payload_length (int [https://docs.python.org/3.4/library/functions.html#int]) – This is the length (in bytes) of a single payload to be transmitted
or received. This is ignored if the dynamic_payloads attribute is enabled. Defaults to 32
and must be in range [1,32]. This can be changed at any time by using the payload_length
attribute.

	address_length (int [https://docs.python.org/3.4/library/functions.html#int]) – This is the length (in bytes) of the addresses that are assigned to
the data pipes for transmitting/receiving. Defaults to 5 and must be in range [3,5]. This
can be changed at any time by using the address_length attribute.

	ard (int [https://docs.python.org/3.4/library/functions.html#int]) – This specifies the delay time (in µs) between attempts to automatically
re-transmit. This can be changed at any time by using the ard attribute. This parameter
must be a multiple of 250 in the range [250,4000]. Defualts to 1500 µs.

	arc (int [https://docs.python.org/3.4/library/functions.html#int]) – This specifies the automatic re-transmit count (maximum number of automatically
attempts to re-transmit). This can be changed at any time by using the arc attribute.
This parameter must be in the range [0,15]. Defaults to 3.

	crc (int [https://docs.python.org/3.4/library/functions.html#int]) – This parameter controls the CRC setting of transmitted packets. Options are
0 (off), 1 or 2 (byte long CRC enabled). This can be changed at any time by
using the crc attribute. Defaults to 2.

	data_rate (int [https://docs.python.org/3.4/library/functions.html#int]) – This parameter controls the RF data rate setting of transmissions.
Options are 1 (Mbps), 2 (Mbps), or 250 (Kbps). This can be changed at any time
by using the data_rate attribute. Defaults to 1.

	pa_level (int [https://docs.python.org/3.4/library/functions.html#int]) – This parameter controls the RF power amplifier setting of transmissions.
Options are 0 (dBm), -6 (dBm), -12 (dBm), or -18 (dBm). This can be changed
at any time by using the pa_level attribute. Defaults to 0.

	dynamic_payloads (bool [https://docs.python.org/3.4/library/functions.html#bool]) – This parameter enables/disables the dynamic payload length
feature of the nRF24L01. Defaults to enabled. This can be changed at any time by using the
dynamic_payloads attribute.

	auto_ack (bool [https://docs.python.org/3.4/library/functions.html#bool]) – This parameter enables/disables the automatic acknowledgment (ACK)
feature of the nRF24L01. Defaults to enabled if dynamic_payloads is enabled. This can be
changed at any time by using the auto_ack attribute.

	ask_no_ack (bool [https://docs.python.org/3.4/library/functions.html#bool]) – This represents a special flag that has to be thrown to enable a
feature specific to individual payloads. Setting this parameter only enables access to this
feature; it does not invoke it (see parameters for send() or write() functions).
Enabling/Disabling this does not affect auto_ack attribute.

	ack (bool [https://docs.python.org/3.4/library/functions.html#bool]) – This represents a special flag that has to be thrown to enable a feature
allowing custom response payloads appended to the ACK packets. Enabling this also requires
the auto_ack attribute enabled. This can be changed at any time by using the ack
attribute.

	irq_DR (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When “Data is Ready”, this configures the interrupt (IRQ) trigger of the
nRF24L01’s IRQ pin (active low). Defaults to enabled. This can be changed at any time by
using the interrupt_config() function.

	irq_DS (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When “Data is Sent”, this configures the interrupt (IRQ) trigger of the
nRF24L01’s IRQ pin (active low). Defaults to enabled. This can be changed at any time by
using the interrupt_config() function.

	irq_DF (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When “max retry attempts are reached” (specified by the arc attribute),
this configures the interrupt (IRQ) trigger of the nRF24L01’s IRQ pin (active low) and
represents transmission failure. Defaults to enabled. This can be changed at any time by
using the interrupt_config() function.

	
address_length

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the length (in bytes) of addresses to be used for RX/TX
pipes. The addresses assigned to the data pipes must have byte length equal to the value
set for this attribute.

A valid input value must be an int [https://docs.python.org/3.4/library/functions.html#int] in range [3,5]. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is
thrown. Default is set to the nRF24L01’s maximum of 5.

	
open_tx_pipe(address)

	This function is used to open a data pipe for OTA (over the air) TX transmissions.

	Parameters

	address (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – The virtual address of the receiving nRF24L01. This must have a
length equal to the address_length attribute (see address_length attribute).
Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown. The address specified here must match the
address set to one of the RX data pipes of the receiving nRF24L01.

Note

There is no option to specify which data pipe to use because the nRF24L01 only
uses data pipe 0 in TX mode. Additionally, the nRF24L01 uses the same data pipe (pipe
0) for receiving acknowledgement (ACK) packets in TX mode when the auto_ack attribute
is enabled. Thus, RX pipe 0 is appropriated with the TX address (specified here) when
auto_ack is set to True [https://docs.python.org/3.4/library/constants.html#True].

	
close_rx_pipe(pipe_number, reset=True)

	This function is used to close a specific data pipe from OTA (over the air) RX
transmissions.

	Parameters

	
	pipe_number (int [https://docs.python.org/3.4/library/functions.html#int]) – The data pipe to use for RX transactions. This must be in range
[0,5]. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown.

	reset (bool [https://docs.python.org/3.4/library/functions.html#bool]) – True [https://docs.python.org/3.4/library/constants.html#True] resets the address for the specified pipe_number to the
factory address (different for each pipe). False [https://docs.python.org/3.4/library/constants.html#False] leaves the address on the specified
pipe_number alone. Be aware that the addresses will remain despite loss of power.

	
open_rx_pipe(pipe_number, address)

	This function is used to open a specific data pipe for OTA (over the air) RX
transmissions. If dynamic_payloads attribute is False [https://docs.python.org/3.4/library/constants.html#False], then the payload_length
attribute is used to specify the expected length of the RX payload on the specified data
pipe.

	Parameters

	
	pipe_number (int [https://docs.python.org/3.4/library/functions.html#int]) – The data pipe to use for RX transactions. This must be in range
[0,5]. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown.

	address (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – The virtual address to the receiving nRF24L01. This must have a
byte length equal to the address_length attribute. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError]
exception is thrown. If using a pipe_number greater than 1, then only the MSByte
of the address is written, so make sure MSByte (first character) is unique among other
simultaneously receiving addresses).

Note

The nRF24L01 shares the addresses’ LSBytes (address[1:5]) on data pipes 2 through
5. These shared LSBytes are determined by the address set to pipe 1.

	
listen

	An attribute to represent the nRF24L01 primary role as a radio.

Setting this attribute incorporates the proper transitioning to/from RX mode as it involves
playing with the power attribute and the nRF24L01’s CE pin. This attribute does not power
down the nRF24L01, but will power it up when needed; use power attribute set to False [https://docs.python.org/3.4/library/constants.html#False]
to put the nRF24L01 to sleep.

A valid input value is a bool [https://docs.python.org/3.4/library/functions.html#bool] in which:

True [https://docs.python.org/3.4/library/constants.html#True] enables RX mode. Additionally, per Appendix B of the nRF24L01+ Specifications
Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1091756], this attribute
flushes the RX FIFO, clears the irq_DR status flag, and puts nRF24L01 in power up
mode. Notice the CE pin is be held HIGH during RX mode.

False [https://docs.python.org/3.4/library/constants.html#False] disables RX mode. As mentioned in above link, this puts nRF24L01’s power in
Standby-I (CE pin is LOW meaning low current & no transmissions) mode which is ideal
for post-reception work. Disabing RX mode doesn’t flush the RX/TX FIFO buffers, so
remember to flush your 3-level FIFO buffers when appropriate using flush_tx() or
flush_rx() (see also the recv() function).

	
any()

	This function checks if the nRF24L01 has received any data at all. Internally, this
function uses pipe() then reports the next available payload’s length (in bytes) – if
there is any.

	Returns

	
	int [https://docs.python.org/3.4/library/functions.html#int] of the size (in bytes) of an available RX payload (if any).

	0 if there is no payload in the RX FIFO buffer.

	
recv()

	This function is used to retrieve the next available payload in the RX FIFO buffer, then
clears the irq_DR status flag. This function also serves as a helper function to
read_ack() in TX mode to aquire any custom payload in the automatic acknowledgement (ACK)
packet – only when the ack attribute is enabled.

	Returns

	A bytearray [https://docs.python.org/3.4/library/functions.html#bytearray] of the RX payload data

	If the dynamic_payloads attribute is disabled, then the returned bytearray’s length
is equal to the user defined payload_length attribute (which defaults to 32).

	If the dynamic_payloads attribute is enabled, then the returned bytearray’s length
is equal to the payload’s length

Tip

Call the any() function before calling recv() to verify that there is data to
fetch. If there’s no data to fetch, then the nRF24L01 returns bogus data and should not
regarded as a valid payload.

	
send(buf, ask_no_ack=False)

	This blocking function is used to transmit payload(s).

	Returns

	
	list [https://docs.python.org/3.4/library/stdtypes.html#list] if a list or tuple of payloads was passed as the buf parameter. Each item
in the returned list will contain the returned status for each corresponding payload
in the list/tuple that was passed. The return statuses will be in one of the
following forms:

	False [https://docs.python.org/3.4/library/constants.html#False] if transmission fails.

	True [https://docs.python.org/3.4/library/constants.html#True] if transmission succeeds.

	bytearray [https://docs.python.org/3.4/library/functions.html#bytearray] when the ack attribute is True [https://docs.python.org/3.4/library/constants.html#True], the payload expects a responding
custom ACK payload; the response is returned (upon successful transmission) as a
bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]. Empty ACK payloads (upon successful transmission) when the ack
attribute is set True [https://docs.python.org/3.4/library/constants.html#True] are replaced with an error message b'NO ACK RETURNED'.

	None [https://docs.python.org/3.4/library/constants.html#None] if transmission times out meaning nRF24L01 has malfunctioned. This condition
is very rare. The allowed time for transmission is calculated using table 18 in the
nRF24L01 specification sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001]

	Parameters

	
	buf (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray],list [https://docs.python.org/3.4/library/stdtypes.html#list],tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The payload to transmit. This bytearray must have a length
greater than 0 and less than 32, otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown. This can
also be a list or tuple of payloads (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]); in which case, all items in the
list/tuple are processed for consecutive transmissions.

	If the dynamic_payloads attribute is disabled and this bytearray’s length is less
than the payload_length attribute, then this bytearray is padded with zeros until
its length is equal to the payload_length attribute.

	If the dynamic_payloads attribute is disabled and this bytearray’s length is
greater than payload_length attribute, then this bytearray’s length is truncated to
equal the payload_length attribute.

	ask_no_ack (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Pass this parameter as True [https://docs.python.org/3.4/library/constants.html#True] to tell the nRF24L01 not to wait for
an acknowledgment from the receiving nRF24L01. This parameter directly controls a
NO_ACK flag in the transmission’s Packet Control Field (9 bits of information about
the payload). Therefore, it takes advantage of an nRF24L01 feature specific to
individual payloads, and its value is not saved anywhere. You do not need to specify
this for every payload if the auto_ack attribute is disabled, however this parameter
should work despite the auto_ack attribute’s setting.

Note

Each transmission is in the form of a packet. This packet contains sections
of data around and including the payload. See Chapter 7.3 in the nRF24L01
Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318] for more
details.

Tip

It is highly recommended that auto_ack attribute is enabled when sending
multiple payloads. Test results with the auto_ack attribute disabled were very poor
(much < 50% received). This same advice applies to the ask_no_ack parameter (leave
it as False [https://docs.python.org/3.4/library/constants.html#False] for multiple payloads).

Warning

The nRF24L01 will block usage of the TX FIFO buffer upon failed
transmissions. Failed transmission’s payloads stay in TX FIFO buffer until the MCU
calls flush_tx() and clear_status_flags(). Therefore, this function will discard
failed transmissions’ payloads when sending a list or tuple of payloads, so it can
continue to process through the list/tuple even if any payload fails to be
acknowledged.

Note

We’ve tried very hard to keep nRF24L01s driven by CircuitPython devices compliant
with nRF24L01s driven by the Raspberry Pi. But due to the Raspberry Pi’s seemingly
slower SPI speeds, we’ve had to resort to internally deploying resend() twice (at
most when needed) for payloads that failed during multi-payload processing. This tactic
is meant to slow down CircuitPython devices just enough for the Raspberry Pi to catch
up. Transmission failures are less possible this way.

Advanced API

	
class circuitpython_nrf24l01.rf24.RF24

	
	
RF24.what_happened(dump_pipes=False)

	This debuggung function aggregates and outputs all status/condition related information
from the nRF24L01. Some information may be irrelevant depending on nRF24L01’s
state/condition.

	Prints

	
	Channel The current setting of the channel attribute

	RF Data Rate The current setting of the RF data_rate attribute.

	RF Power Amplifier The current setting of the pa_level attribute.

	CRC bytes The current setting of the crc attribute

	Address length The current setting of the address_length attribute

	Payload lengths The current setting of the payload_length attribute

	Auto retry delay The current setting of the ard attribute

	Auto retry attempts The current setting of the arc attribute

	Packets Lost Total amount of packets lost (transmission failures)

	Retry Attempts Made Maximum amount of attempts to re-transmit during last
transmission (resets per payload)

	IRQ - Data Ready The current setting of the IRQ pin on “Data Ready” event

	IRQ - Data Sent The current setting of the IRQ pin on “Data Sent” event

	IRQ - Data Fail The current setting of the IRQ pin on “Data Fail” event

	Data Ready Is there RX data ready to be read?
(state of the irq_DR flag)

	Data Sent Has the TX data been sent? (state of the irq_DS flag)

	Data Failed Has the maximum attempts to re-transmit been reached?
(state of the irq_DF flag)

	TX FIFO full Is the TX FIFO buffer full? (state of the tx_full flag)

	TX FIFO empty Is the TX FIFO buffer empty?

	RX FIFO full Is the RX FIFO buffer full?

	RX FIFO empty Is the RX FIFO buffer empty?

	Custom ACK payload Is the nRF24L01 setup to use an extra (user defined) payload
attached to the acknowledgment packet? (state of the ack attribute)

	Ask no ACK Is the nRF24L01 setup to transmit individual packets that don’t
require acknowledgment?

	Automatic Acknowledgment Is the auto_ack attribute enabled?

	Dynamic Payloads Is the dynamic_payloads attribute enabled?

	Primary Mode The current mode (RX or TX) of communication of the nRF24L01 device.

	Power Mode The power state can be Off, Standby-I, Standby-II, or On.

	Parameters

	dump_pipes (bool [https://docs.python.org/3.4/library/functions.html#bool]) – True [https://docs.python.org/3.4/library/constants.html#True] appends the output and prints:

	the current address used for TX transmissions

	Pipe [#] ([open/closed]) bound: [address] where # represent the pipe number,
the open/closed status is relative to the pipe’s RX status, and address is
read directly from the nRF24L01 registers.

	if the pipe is open, then the output also prints expecting [X] byte static
payloads where X is the payload_length (in bytes) the pipe is setup to
receive when dynamic_payloads is disabled.

Default is False [https://docs.python.org/3.4/library/constants.html#False] and skips this extra information.

	
RF24.dynamic_payloads

	This bool [https://docs.python.org/3.4/library/functions.html#bool] attribute controls the nRF24L01’s dynamic payload length feature.

	True [https://docs.python.org/3.4/library/constants.html#True] enables nRF24L01’s dynamic payload length feature. The payload_length
attribute is ignored when this feature is enabled.

	False [https://docs.python.org/3.4/library/constants.html#False] disables nRF24L01’s dynamic payload length feature. Be sure to adjust
the payload_length attribute accordingly when dynamic_payloads feature is disabled.

	
RF24.payload_length

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the length (in bytes) of payload that is regarded,
meaning “how big of a payload should the radio care about?” If the dynamic_payloads
attribute is enabled, this attribute has no affect. When dynamic_payloads is disabled,
this attribute is used to specify the payload length when entering RX mode.

A valid input value must be an int [https://docs.python.org/3.4/library/functions.html#int] in range [1,32]. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is
thrown. Default is set to the nRF24L01’s maximum of 32.

Note

When dynamic_payloads is disabled during transmissions:

	Payloads’ size of greater than this attribute’s value will be truncated to match.

	Payloads’ size of less than this attribute’s value will be padded with zeros to
match.

	
RF24.auto_ack

	This bool [https://docs.python.org/3.4/library/functions.html#bool] attribute controls the nRF24L01’s automatic acknowledgment feature.

	True [https://docs.python.org/3.4/library/constants.html#True] enables automatic acknowledgment packets. The CRC (cyclic redundancy checking)
is enabled automatically by the nRF24L01 if the auto_ack attribute is enabled (see also
crc attribute).

	False [https://docs.python.org/3.4/library/constants.html#False] disables automatic acknowledgment packets. The crc attribute will
remain unaffected (remains enabled) when disabling the auto_ack attribute.

	
RF24.irq_DR

	A bool [https://docs.python.org/3.4/library/functions.html#bool] that represents the “Data Ready” interrupted flag. (read-only)

	True [https://docs.python.org/3.4/library/constants.html#True] represents Data is in the RX FIFO buffer

	False [https://docs.python.org/3.4/library/constants.html#False] represents anything depending on context (state/condition of FIFO buffers) –
usually this means the flag’s been reset.

Pass dataReady parameter as True [https://docs.python.org/3.4/library/constants.html#True] to clear_status_flags() and reset this. As this is
a virtual representation of the interrupt event, this attribute will always be updated
despite what the actual IRQ pin is configured to do about this event.

Calling this does not execute an SPI transaction. It only exposes that latest data
contained in the STATUS byte that’s always returned from any other SPI transactions. Use
the update() function to manually refresh this data when needed.

	
RF24.irq_DF

	A bool [https://docs.python.org/3.4/library/functions.html#bool] that represents the “Data Failed” interrupted flag. (read-only)

	True [https://docs.python.org/3.4/library/constants.html#True] signifies the nRF24L01 attemped all configured retries

	False [https://docs.python.org/3.4/library/constants.html#False] represents anything depending on context (state/condition) – usually this means
the flag’s been reset.

Pass dataFail parameter as True [https://docs.python.org/3.4/library/constants.html#True] to clear_status_flags() to reset this. As this is a
virtual representation of the interrupt event, this attribute will always be updated
despite what the actual IRQ pin is configured to do about this event.see also the arc and
ard attributes.

Calling this does not execute an SPI transaction. It only exposes that latest data
contained in the STATUS byte that’s always returned from any other SPI transactions. Use
the update() function to manually refresh this data when needed.

	
RF24.irq_DS

	A bool [https://docs.python.org/3.4/library/functions.html#bool] that represents the “Data Sent” interrupted flag. (read-only)

	True [https://docs.python.org/3.4/library/constants.html#True] represents a successful transmission

	False [https://docs.python.org/3.4/library/constants.html#False] represents anything depending on context (state/condition of FIFO buffers) –
usually this means the flag’s been reset.

Pass dataSent parameter as True [https://docs.python.org/3.4/library/constants.html#True] to clear_status_flags() to reset this. As this is a
virtual representation of the interrupt event, this attribute will always be updated
despite what the actual IRQ pin is configured to do about this event.

Calling this does not execute an SPI transaction. It only exposes that latest data
contained in the STATUS byte that’s always returned from any other SPI transactions. Use
the update() function to manually refresh this data when needed.

	
RF24.clear_status_flags(data_recv=True, data_sent=True, data_fail=True)

	This clears the interrupt flags in the status register. Internally, this is
automatically called by send(), write(), recv(), and when listen changes from
False [https://docs.python.org/3.4/library/constants.html#False] to True [https://docs.python.org/3.4/library/constants.html#True].

	Parameters

	
	data_recv (bool [https://docs.python.org/3.4/library/functions.html#bool]) – specifies wheather to clear the “RX Data Ready” flag.

	data_sent (bool [https://docs.python.org/3.4/library/functions.html#bool]) – specifies wheather to clear the “TX Data Sent” flag.

	data_fail (bool [https://docs.python.org/3.4/library/functions.html#bool]) – specifies wheather to clear the “Max Re-transmit reached” flag.

Note

Clearing the data_fail flag is necessary for continued transmissions from the
nRF24L01 (locks the TX FIFO buffer when irq_DF is True [https://docs.python.org/3.4/library/constants.html#True]) despite wheather or not the
MCU is taking advantage of the interrupt (IRQ) pin. Call this function only when there
is an antiquated status flag (after you’ve dealt with the specific payload related to
the staus flags that were set), otherwise it can cause payloads to be ignored and
occupy the RX/TX FIFO buffers. See Appendix A of the nRF24L01+ Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1047965] for an outline of
proper behavior.

	
RF24.interrupt_config(data_recv=True, data_sent=True, data_fail=True)

	Sets the configuration of the nRF24L01’s IRQ (interrupt) pin. The signal from the
nRF24L01’s IRQ pin is active LOW. (write-only)

	Parameters

	
	data_recv (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If this is True [https://docs.python.org/3.4/library/constants.html#True], then IRQ pin goes active when there is new data
to read in the RX FIFO buffer.

	data_sent (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If this is True [https://docs.python.org/3.4/library/constants.html#True], then IRQ pin goes active when a payload from TX
buffer is successfully transmit.

	data_fail (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If this is True [https://docs.python.org/3.4/library/constants.html#True], then IRQ pin goes active when maximum number of
attempts to re-transmit the packet have been reached. If auto_ack attribute is
disabled, then this IRQ event is not used.

Note

To fetch the status (not configuration) of these IRQ flags, use the irq_DF,
irq_DS, irq_DR attributes respectively.

Tip

Paraphrased from nRF24L01+ Specification Sheet:

The procedure for handling data_recv IRQ should be:

	read payload through recv()

	clear dataReady status flag (taken care of by using recv() in previous step)

	read FIFO_STATUS register to check if there are more payloads available in RX FIFO
buffer. (a call to pipe(), any() or even (False,True) as parameters to
fifo() will get this result)

	if there is more data in RX FIFO, repeat from step 1

	
RF24.ack

	This bool [https://docs.python.org/3.4/library/functions.html#bool] attribute represents the status of the nRF24L01’s capability to use custom
payloads as part of the automatic acknowledgment (ACK) packet. Use this attribute to
set/check if the custom ACK payloads feature is enabled.

	True [https://docs.python.org/3.4/library/constants.html#True] enables the use of custom ACK payloads in the ACK packet when responding to
receiving transmissions. As dynamic_payloads and auto_ack attributes are required for
this feature to work, they are automatically enabled as needed.

	False [https://docs.python.org/3.4/library/constants.html#False] disables the use of custom ACK payloads. Disabling this feature does not disable
the auto_ack and dynamic_payloads attributes (they work just fine without this
feature).

	
RF24.load_ack(buf, pipe_number)

	This allows the MCU to specify a payload to be allocated into the TX FIFO buffer for use
on a specific data pipe. This payload will then be appended to the automatic acknowledgment
(ACK) packet that is sent when fresh data is received on the specified pipe. See
read_ack() on how to fetch a received custom ACK payloads.

	Parameters

	
	buf (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – This will be the data attached to an automatic ACK packet on the
incoming transmission about the specified pipe_number parameter. This must have a
length in range [1,32] bytes, otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown. Any ACK
payloads will remain in the TX FIFO buffer until transmitted successfully or
flush_tx() is called.

	pipe_number (int [https://docs.python.org/3.4/library/functions.html#int]) – This will be the pipe number to use for deciding which
transmissions get a response with the specified buf parameter’s data. This number
must be in range [0,5], otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown.

	Returns

	True [https://docs.python.org/3.4/library/constants.html#True] if payload was successfully loaded onto the TX FIFO buffer. False [https://docs.python.org/3.4/library/constants.html#False] if it
wasn’t because TX FIFO buffer is full.

Note

this function takes advantage of a special feature on the nRF24L01 and needs to
be called for every time a customized ACK payload is to be used (not for every
automatic ACK packet – this just appends a payload to the ACK packet). The ack,
auto_ack, and dynamic_payloads attributes are also automatically enabled by this
function when necessary.

Tip

The ACK payload must be set prior to receiving a transmission. It is also worth
noting that the nRF24L01 can hold up to 3 ACK payloads pending transmission. Using this
function does not over-write existing ACK payloads pending; it only adds to the queue
(TX FIFO buffer) if it can. Use flush_tx() to discard unused ACK payloads when done
listening.

	
RF24.read_ack()

	Allows user to read the automatic acknowledgement (ACK) payload (if any) when nRF24L01
is in TX mode. This function is called from a blocking send() call if the ack attribute
is enabled. Alternatively, this function can be called directly in case of calling the
non-blocking write() function during asychronous applications.

Warning

In the case of asychronous applications, this function will do nothing if the
status flags are cleared after calling write() and before calling this function. See
also the ack, dynamic_payloads, and auto_ack attributes as they must be enabled
to use custom ACK payloads.

	
RF24.data_rate

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the nRF24L01’s frequency data rate for OTA (over the air)
transmissions.

A valid input value is:

	1 sets the frequency data rate to 1 Mbps

	2 sets the frequency data rate to 2 Mbps

	250 sets the frequency data rate to 250 Kbps

Any invalid input throws a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception. Default is 1 Mbps.

Warning

250 Kbps is be buggy on the non-plus models of the nRF24L01 product line. If
you use 250 Kbps data rate, and some transmissions report failed by the transmitting
nRF24L01, even though the same packet in question actually reports received by the
receiving nRF24L01, then try a higher data rate. CAUTION: Higher data rates mean less
maximum distance between nRF24L01 transceivers (and vise versa).

	
RF24.channel

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the nRF24L01’s frequency (in 2400 + channel MHz).

A valid input value must be in range [0, 125] (that means [2.4, 2.525] GHz). Otherwise a
ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown. Default is 76.

	
RF24.crc

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the nRF24L01’s CRC (cyclic redundancy checking) encoding
scheme in terms of byte length.

A valid input value is in range [0,2]:

	0 disables CRC

	1 enables CRC encoding scheme using 1 byte

	2 enables CRC encoding scheme using 2 bytes

Any invalid input throws a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception. Default is enabled using 2 bytes.

Note

The nRF24L01 automatically enables CRC if automatic acknowledgment feature is
enabled (see auto_ack attribute).

	
RF24.power

	This bool [https://docs.python.org/3.4/library/functions.html#bool] attribute controls the power state of the nRF24L01. This is exposed for
asynchronous applications and user preference.

	False [https://docs.python.org/3.4/library/constants.html#False] basically puts the nRF24L01 to sleep (AKA power down mode) with ultra-low
current consumption. No transmissions are executed when sleeping, but the nRF24L01 can
still be accessed through SPI. Upon instantiation, this driver class puts the nRF24L01
to sleep until the MCU invokes RX/TX transmissions. This driver class doesn’t power down
the nRF24L01 after RX/TX transmissions are complete (avoiding the required power up/down
130 µs wait time), that preference is left to the user.

	True [https://docs.python.org/3.4/library/constants.html#True] powers up the nRF24L01. This is the first step towards entering RX/TX modes (see
also listen attribute). Powering up is automatically handled by the listen attribute
as well as the send() and write() functions.

Note

This attribute needs to be True [https://docs.python.org/3.4/library/constants.html#True] if you want to put radio on Standby-II (highest
current consumption) or Standby-I (moderate current consumption) modes. TX
transmissions are only executed during Standby-II by calling send() or write(). RX
transmissions are received during Standby-II by setting listen attribute to True [https://docs.python.org/3.4/library/constants.html#True]
(see Chapter 6.1.2-7 of the nRF24L01+ Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132980]). After using send() or setting listen to False [https://docs.python.org/3.4/library/constants.html#False], the nRF24L01
is left in Standby-I mode (see also notes on the write() function).

	
RF24.arc

	“This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the nRF24L01’s number of attempts to re-transmit TX
payload when acknowledgment packet is not received. The nRF24L01 does not attempt to
re-transmit if auto_ack attribute is disabled.

A valid input value must be in range [0,15]. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown.
Default is set to 3.

	
RF24.ard

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the nRF24L01’s delay (in µs) between attempts to
automatically re-transmit the TX payload when an expected acknowledgement (ACK) packet is
not received. During this time, the nRF24L01 is listening for the ACK packet. If the
auto_ack attribute is disabled, this attribute is not applied.

A valid input value must be a multiple of 250 in range [250,4000]. Otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError]
exception is thrown. Default is 1500 for reliability.

Note

Paraphrased from nRF24L01 specifications sheet:

Please take care when setting this parameter. If the custom ACK payload is more than 15
bytes in 2 Mbps data rate, the ard must be 500µS or more. If the custom ACK payload
is more than 5 bytes in 1 Mbps data rate, the ard must be 500µS or more. In 250kbps
data rate (even when there is no custom ACK payload) the ard must be 500µS or more.

See data_rate attribute on how to set the data rate of the nRF24L01’s transmissions.

	
RF24.pa_level

	This int [https://docs.python.org/3.4/library/functions.html#int] attribute specifies the nRF24L01’s power amplifier level (in dBm). Higher
levels mean the transmission will cover a longer distance. Use this attribute to tweak the
nRF24L01 current consumption on projects that don’t span large areas.

A valid input value is:

	-18 sets the nRF24L01’s power amplifier to -18 dBm (lowest)

	-12 sets the nRF24L01’s power amplifier to -12 dBm

	-6 sets the nRF24L01’s power amplifier to -6 dBm

	0 sets the nRF24L01’s power amplifier to 0 dBm (highest)

Any invalid input throws a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception. Default is 0 dBm.

	
RF24.tx_full

	An attribute to represent the nRF24L01’s status flag signaling that the TX FIFO buffer
is full. (read-only)

Calling this does not execute an SPI transaction. It only exposes that latest data
contained in the STATUS byte that’s always returned from any SPI transactions with the
nRF24L01. Use the update() function to manually refresh this data when needed.

	Returns

	
	True [https://docs.python.org/3.4/library/constants.html#True] for TX FIFO buffer is full

	False [https://docs.python.org/3.4/library/constants.html#False] for TX FIFO buffer is not full. This doesn’t mean the TX FIFO buffer is
empty.

	
RF24.update()

	This function is only used to get an updated status byte over SPI from the nRF24L01 and
is exposed to the MCU for asynchronous applications. Refreshing the status byte is vital to
checking status of the interrupts, RX pipe number related to current RX payload, and if the
TX FIFO buffer is full. This function returns nothing, but internally updates the irq_DR,
irq_DS, irq_DF, and tx_full attributes. Internally this is a helper function to
pipe(), send(), and resend() functions

	
RF24.resend()

	Use this function to maunally re-send the previously failed-to-transmit payload in the
top level (first out) of the TX FIFO buffer.

Note

The nRF24L01 normally removes a payload from the TX FIFO buffer after successful
transmission, but not when this function is called. The payload (successfully
transmitted or not) will remain in the TX FIFO buffer until flush_tx() is called to
remove them. Alternatively, using this function also allows the failed payload to be
over-written by using send() or write() to load a new payload.

	
RF24.write(buf=None, ask_no_ack=False)

	This non-blocking function (when used as alternative to send()) is meant for
asynchronous applications and can only handle one payload at a time as it is a helper
function to send().

	Parameters

	
	buf (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – The payload to transmit. This bytearray must have a length greater
than 0 and less than 32 bytes, otherwise a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] exception is thrown.

	If the dynamic_payloads attribute is disabled and this bytearray’s length is less
than the payload_length attribute, then this bytearray is padded with zeros until
its length is equal to the payload_length attribute.

	If the dynamic_payloads attribute is disabled and this bytearray’s length is
greater than payload_length attribute, then this bytearray’s length is truncated to
equal the payload_length attribute.

	ask_no_ack (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Pass this parameter as True [https://docs.python.org/3.4/library/constants.html#True] to tell the nRF24L01 not to wait for
an acknowledgment from the receiving nRF24L01. This parameter directly controls a
NO_ACK flag in the transmission’s Packet Control Field (9 bits of information about
the payload). Therefore, it takes advantage of an nRF24L01 feature specific to
individual payloads, and its value is not saved anywhere. You do not need to specify
this for every payload if the auto_ack attribute is disabled, however this parameter
should work despite the auto_ack attribute’s setting.

Note

Each transmission is in the form of a packet. This packet contains sections
of data around and including the payload. See Chapter 7.3 in the nRF24L01
Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318] for more
details.

This function isn’t completely non-blocking as we still need to wait just under 5 ms for
the CSN pin to settle (allowing a clean SPI transaction).

Note

The nRF24L01 doesn’t initiate sending until a mandatory minimum 10 µs pulse on
the CE pin is acheived. That pulse is initiated before this function exits. However, we
have left that 10 µs wait time to be managed by the MCU in cases of asychronous
application, or it is managed by using send() instead of this function. If the CE pin
remains HIGH for longer than 10 µs, then the nRF24L01 will continue to transmit all
payloads found in the TX FIFO buffer.

Warning

A note paraphrased from the nRF24L01+ Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422]:

It is important to NEVER to keep the nRF24L01+ in TX mode for more than 4 ms at a time.
If the [auto_ack and dynamic_payloads] features are enabled, nRF24L01+ is never in
TX mode longer than 4 ms.

Tip

Use this function at your own risk. Because of the underlying “Enhanced
ShockBurst Protocol” [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132607], disobeying the 4
ms rule is easily avoided if you enable the dynamic_payloads and auto_ack
attributes. Alternatively, you MUST use interrupt flags or IRQ pin with user defined
timer(s) to AVOID breaking the 4 ms rule. If the nRF24L01+ Specifications Sheet
explicitly states this [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422], we have to assume
radio damage or misbehavior as a result of disobeying the 4 ms rule. See also table 18
in the nRF24L01 specification sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001] for calculating
necessary transmission time (these calculations are used in the send() function).

	
RF24.flush_rx()

	A helper function to flush the nRF24L01’s internal RX FIFO buffer. (write-only)

Note

The nRF24L01 RX FIFO is 3 level stack that holds payload data. This means that
there can be up to 3 received payloads (each of a maximum length equal to 32 bytes)
waiting to be read (and popped from the stack) by recv() or read_ack(). This
function clears all 3 levels.

	
RF24.flush_tx()

	A helper function to flush the nRF24L01’s internal TX FIFO buffer. (write-only)

Note

The nRF24L01 TX FIFO is 3 level stack that holds payload data. This means that
there can be up to 3 payloads (each of a maximum length equal to 32 bytes) waiting to
be transmit by send(), resend() or write(). This function clears all 3 levels. It
is worth noting that the payload data is only popped from the TX FIFO stack upon
successful transmission (see also resend() as the handling of failed transmissions
can be altered).

	
RF24.fifo(tx=False, empty=None)

	This provides some precision determining the status of the TX/RX FIFO buffers.
(read-only)

	Parameters

	
	tx (bool [https://docs.python.org/3.4/library/functions.html#bool]) –
	True [https://docs.python.org/3.4/library/constants.html#True] means information returned is about the TX FIFO buffer.

	False [https://docs.python.org/3.4/library/constants.html#False] means information returned is about the RX FIFO buffer. This parameter
defaults to False [https://docs.python.org/3.4/library/constants.html#False] when not specified.

	empty (bool [https://docs.python.org/3.4/library/functions.html#bool]) –
	True [https://docs.python.org/3.4/library/constants.html#True] tests if the specified FIFO buffer is empty.

	False [https://docs.python.org/3.4/library/constants.html#False] tests if the specified FIFO buffer is full.

	None [https://docs.python.org/3.4/library/constants.html#None] (when not specified) returns a 2 bit number representing both empty (bit 1) &
full (bit 0) tests related to the FIFO buffer specified using the tx parameter.

	Returns

	
	A bool [https://docs.python.org/3.4/library/functions.html#bool] answer to the question:
“Is the [TX/RX]:[True [https://docs.python.org/3.4/library/constants.html#True]/False [https://docs.python.org/3.4/library/constants.html#False]] FIFO buffer [empty/full]:[True [https://docs.python.org/3.4/library/constants.html#True]/False [https://docs.python.org/3.4/library/constants.html#False]]?

	If the empty parameter is not specified: an int [https://docs.python.org/3.4/library/functions.html#int] in range [0,2] for which:

	1 means the specified FIFO buffer is full

	2 means the specified FIFO buffer is empty

	0 means the specified FIFO buffer is neither full nor empty

	
RF24.pipe()

	This function returns information about the data pipe that received the next available
payload in the RX FIFO buffer.

	Returns

	
	None [https://docs.python.org/3.4/library/constants.html#None] if there is no payload in RX FIFO.

	The int [https://docs.python.org/3.4/library/functions.html#int] identifying pipe number [0,5] that received the next available payload in
the RX FIFO buffer.

Index

 A
 | C
 | D
 | F
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	ack (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	address_length (circuitpython_nrf24l01.rf24.RF24 attribute)

 	any() (circuitpython_nrf24l01.rf24.RF24 method)

 	
 	arc (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	ard (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	auto_ack (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

C

 	
 	channel (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	circuitpython_nrf24l01.rf24.RF24 (class in circuitpython_nrf24l01.rf24)

 	
 	clear_status_flags() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	close_rx_pipe() (circuitpython_nrf24l01.rf24.RF24 method)

 	crc (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

D

 	
 	data_rate (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	
 	dynamic_payloads (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

F

 	
 	fifo() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	
 	flush_rx() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	flush_tx() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

I

 	
 	interrupt_config() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	irq_DF (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	
 	irq_DR (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	irq_DS (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

L

 	
 	listen (circuitpython_nrf24l01.rf24.RF24 attribute)

 	
 	load_ack() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

O

 	
 	open_rx_pipe() (circuitpython_nrf24l01.rf24.RF24 method)

 	
 	open_tx_pipe() (circuitpython_nrf24l01.rf24.RF24 method)

P

 	
 	pa_level (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	payload_length (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

 	
 	pipe() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	power (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

R

 	
 	read_ack() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	recv() (circuitpython_nrf24l01.rf24.RF24 method)

 	
 	resend() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	RF24 (class in circuitpython_nrf24l01.rf24)

S

 	
 	send() (circuitpython_nrf24l01.rf24.RF24 method)

T

 	
 	tx_full (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 attribute)

U

 	
 	update() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

W

 	
 	what_happened() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 	
 	write() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24 method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 ACK Payloads Example

 		
 IRQ Pin Example

 		
 Stream Example

 		
 Context Example

 		
 Working with TMRh20’s Arduino library

 		
 RF24 class

 		
 Basic API

 		
 Advanced API

_static/up.png

_images/198c91ca675849ebacbcb17285f0b2dd7ea32d3c.png
g

ENGINEERS com

Last Minute

Pinout

nRF24L01+

_static/up-pressed.png

