
nRF24L01 Library Documentation
Release 1.0

Brendan Doherty

Oct 06, 2020

Contents

1 Features currently supported 3

2 Features currently unsupported 5
2.1 Dependencies . 5
2.2 Installing from PyPI . 5
2.3 Pinout . 6
2.4 Using The Examples . 6
2.5 About the nRF24L01 . 7

3 Key Features: 9

4 Applications 11
4.1 Where do I get 1? . 12
4.2 Contributing . 12

5 Sphinx documentation 13
5.1 Table of Contents . 13

5.1.1 Simple test . 13
5.1.2 ACK Payloads Example . 15
5.1.3 IRQ Pin Example . 17
5.1.4 Stream Example . 19
5.1.5 Context Example . 21
5.1.6 Working with TMRh20’s Arduino library . 22
5.1.7 RF24 class . 24

5.1.7.1 Basic API . 26
5.1.7.2 Advanced API . 30

5.2 Indices and tables . 39

Index 41

i

ii

nRF24L01 Library Documentation, Release 1.0

Circuitpython driver library for the nRF24L01 transceiver

CircuitPython port of the nRF24L01 library from Micropython. Original work by Damien P. George & Peter Hinch
can be found here

The Micropython source has been rewritten to expose all the nRF24L01’s features and for compatibilty with the
Raspberry Pi and other Circuitpython compatible devices. Modified by Brendan Doherty, Rhys Thomas

• Author(s): Damien P. George, Peter Hinch, Rhys Thomas, Brendan Doherty

Contents 1

https://circuitpython-nrf24l01.readthedocs.io/
https://travis-ci.org/2bndy5/CircuitPython_nRF24L01
https://pypi.python.org/pypi/circuitpython-nrf24l01
https://pepy.tech/project/circuitpython-nrf24l01
https://github.com/micropython/micropython/tree/master/drivers/nrf24l01

nRF24L01 Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Features currently supported

• change the addresses’ length (can be 3 to 5 bytes long)

• dynamically sized payloads (max 32 bytes each) or statically sized payloads

• automatic responding acknowledgment (ACK) for verifying transmission success

• custom acknowledgment (ACK) payloads for bi-directional communication

• flag a single payload for no acknowledgment (ACK) from the receiving nRF24L01

• “re-use the same payload” feature (for manually re-transmitting failed transmissions that remain in the buffer)

• multiple payload transmissions with one function call (MUST read documentation on the send() function)

• context manager compatible for easily switching between different radio configurations using “with” statements

• configure the interrupt (IRQ) pin to trigger (active low) on received, sent, and/or failed transmissions (these 3
flags control the 1 IRQ pin). There’s also virtual representations of these interrupt flags available (see irq_DR,
irq_DS, irq_DF attributes)

• invoke sleep mode (AKA power down mode) for ultra-low current consumption

• cyclic redundancy checking (CRC) up to 2 bytes long

• adjust the nRF24L01’s builtin automatic re-transmit feature’s parameters (arc: number of attempts, ard: delay
between attempts)

• adjust the nRF24L01’s frequency channel (2.4-2.525 GHz)

• adjust the nRF24L01’s power amplifier level (0, -6, -12, or -18 dBm)

• adjust the nRF24L01’s RF data rate (250Kbps is buggy due to hardware design, but 1Mbps and 2Mbps are
reliable)

• a nRF24L01 driven by this library can communicate with a nRF24L01 on an Arduino driven by the TMRh20
RF24 library. See the nrf24l01_2arduino_handling_data.py code in the examples folder of this library’s reposi-
tory

3

http://tmrh20.github.io/RF24/
http://tmrh20.github.io/RF24/
examples.html#working-with-tmrh20-s-arduino-library
examples.html#working-with-tmrh20-s-arduino-library

nRF24L01 Library Documentation, Release 1.0

4 Chapter 1. Features currently supported

CHAPTER 2

Features currently unsupported

• as of yet, no [intended] implementation for Multiceiver mode (up to 6 TX nRF24L01 “talking” to 1 RX
nRF24L01 simultaneously). Although this might be acheived easily using the “automatic retry delay” (ard)
and “automatic retry count” (arc) attributes set accordingly (varyingly high – this has not been tested).

2.1 Dependencies

This driver depends on:

• Adafruit CircuitPython

• Bus Device

Please ensure all dependencies are available on the CircuitPython filesystem. This is easily achieved by downloading
the Adafruit library and driver bundle.

2.2 Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from PyPI. To install for
current user:

pip3 install circuitpython-nrf24l01

To install system-wide (this may be required in some cases):

sudo pip3 install circuitpython-nrf24l01

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env

(continues on next page)

5

https://github.com/adafruit/circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://pypi.org/project/circuitpython-nrf24l01/

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

source .env/bin/activate
pip3 install circuitpython-nrf24l01

2.3 Pinout

The nRF24L01 is controlled through SPI so there are 3 pins (SCK, MOSI, & MISO) that can only be connected to
their counterparts on the MCU (microcontroller unit). The other 2 essential pins (CE & CSN) can be connected to
any digital output pins. Lastly, the only optional pin on the nRf24L01 GPIOs is the IRQ (interrupt; a digital output
that’s active when low) pin and is only connected to the MCU via a digital input pin during the interrupt example. The
following pinout is used in the example codes of this library’s example directory.

nRF24L01 Raspberry Pi ItsyBitsy M4
GND GND GND
VCC 3V 3.3V
CE GPIO4 D4
CSN GPIO5 D5
SCK GPIO11 (SCK) SCK
MOSI GPIO10 (MOSI) MOSI
MISO GPIO9 (MISO) MISO
IRQ GPIO4 D4

Tip: User reports and personal experiences have improved results if there is a capacitor of 100 mirofarads [+ another
optional 0.1 microfarads capacitor for added stability] connected in parrallel to the VCC and GND pins.

2.4 Using The Examples

See examples for testing certain features of this the library. The examples were developed and tested on both Raspberry
Pi and ItsyBitsy M4. Pins have been hard coded in the examples for the corresponding device, so please adjust these
accordingly to your circuitpython device if necessary.

To run the simple example, navigate to this repository’s “examples” folder in the terminal. If you’re working with
a CircuitPython device (not a Raspberry Pi), copy the file named “nrf24l01_simple_test.py” from this repository’s
“examples” folder to the root directory of your CircuitPython device’s CIRCUITPY drive. Now you’re ready to open
a python REPR and run the following commands:

>>> from nrf24l01_simple_test import *
nRF24L01 Simple test
Run slave() on receiver
Run master() on transmitter

>>> master(3)
Sending: 3 as struct: b'\x03\x00\x00\x00'
send() succeessful

(continues on next page)

6 Chapter 2. Features currently unsupported

https://lastminuteengineers.com/nrf24l01-arduino-wireless-communication/#nrf24l01-transceiver-module-pinout
https://github.com/2bndy5/CircuitPython_nRF24L01/tree/master/examples
https://circuitpython-nrf24l01.readthedocs.io/en/latest/examples.html

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

Transmission took 86.0 ms
Sending: 2 as struct: b'\x02\x00\x00\x00'
send() succeessful
Transmission took 109.0 ms
Sending: 1 as struct: b'\x01\x00\x00\x00'
send() succeessful
Transmission took 109.0 ms
these results were observed from a test on the Raspberry Pi 3
transmissions from a CircuitPython device took 32 to 64 ms

2.5 About the nRF24L01

Here are the features listed directly from the datasheet (referenced here in the documentation as the nRF24L01+
Specification Sheet):

2.5. About the nRF24L01 7

https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf

nRF24L01 Library Documentation, Release 1.0

8 Chapter 2. Features currently unsupported

CHAPTER 3

Key Features:

• Worldwide 2.4GHz ISM band operation

• 250kbps, 1Mbps and 2Mbps on air data rates

• Ultra low power operation

• 11.3mA TX at 0dBm output power

• 13.5mA RX at 2Mbps air data rate

• 900nA in power down

• 26𝜇A in standby-I

• On chip voltage regulator

• 1.9 to 3.6V supply range

• Enhanced ShockBurst™

• Automatic packet handling

• Auto packet transaction handling

• 6 data pipe MultiCeiver™

• Drop-in compatibility with nRF24L01

• On-air compatible in 250kbps and 1Mbps with nRF2401A, nRF2402, nRF24E1 and nRF24E2

• Low cost BOM

• ±60ppm 16MHz crystal

• 5V tolerant inputs

• Compact 20-pin 4x4mm QFN package

9

nRF24L01 Library Documentation, Release 1.0

10 Chapter 3. Key Features:

CHAPTER 4

Applications

• Wireless PC Peripherals

• Mouse, keyboards and remotes

• 3-in-1 desktop bundles

• Advanced Media center remote controls

• VoIP headsets

• Game controllers

• Sports watches and sensors

• RF remote controls for consumer electronics

• Home and commercial automation

• Ultra low power sensor networks

• Active RFID

• Asset tracking systems

• Toys

Future Project Ideas/Additions using the nRF24L01 (not currently supported by this circuitpython library):

• There’s a few blog posts by Nerd Ralph demonstrating how to use the nRF24L01 via 2 or 3 pins (uses custom
bitbanging SPI functions and an external circuit involving a resistor and a capacitor)

• network linking layer, maybe something like TMRh20’s RF24Network

• add a fake BLE module for sending BLE beacon advertisments from the nRF24L01 as outlined by Dmitry
Grinberg in his write-up (including C source code). We’ve started developing this, but fell short of success in
the BLEfake branch of this library’s repository

11

http://nerdralph.blogspot.com/2015/05/nrf24l01-control-with-2-mcu-pins-using.html
http://tmrh20.github.io/RF24Network/
http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery
http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery
https://github.com/2bndy5/CircuitPython_nRF24L01/tree/BLEfake

nRF24L01 Library Documentation, Release 1.0

4.1 Where do I get 1?

See the store links on the sidebar or just google “nRF24L01”. It is worth noting that you generally don’t want to buy
just 1 as you need 2 for testing – 1 to send & 1 to receive and vise versa. This library has been tested on a cheaply
bought 10 pack from Amazon.com using a highly recommended capacitor (100 µF) on the power pins. Don’t get lost
on Amazon or eBay! There are other wireless transceivers that are NOT compatible with this library. For instance, the
esp8266-01 (also sold in packs) is NOT compatible with this library, but looks very similar to the nRF24L01(+) and
could lead to an accidental purchase.

4.2 Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.
To contribute, all you need to do is fork this repository, develop your idea(s) and submit a pull request when stable.
To initiate a discussion of idea(s), you need only open an issue on the aforementioned repository (doesn’t have to be a
bug report).

12 Chapter 4. Applications

https://github.com/2bndy5/CircuitPython_nRF24L01/blob/master/CODE_OF_CONDUCT.md
https://github.com/2bndy5/CircuitPython_nRF24L01.git

CHAPTER 5

Sphinx documentation

Sphinx is used to build the documentation based on rST files and comments in the code. First, install dependencies
(feel free to reuse the virtual environment from above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-rtd-theme

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build/html

This will output the documentation to docs/_build/html. Open the index.html in your browser to view them. It
will also (due to -W) error out on any warning like Travis CI does. This is a good way to locally verify it will pass.

5.1 Table of Contents

5.1.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/nrf24l01_simple_test.py

1 """
2 Simple example of library usage.
3 """
4 import time
5 import struct
6 import board
7 import digitalio as dio
8 from circuitpython_nrf24l01 import RF24

(continues on next page)

13

https://circuitpython-nrf24l01.readthedocs.io/en/latest/#installing-from-pypi

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

9

10 # addresses needs to be in a buffer protocol object (bytearray)
11 address = b'1Node'
12

13 # change these (digital output) pins accordingly
14 ce = dio.DigitalInOut(board.D4)
15 csn = dio.DigitalInOut(board.D5)
16

17 # using board.SPI() automatically selects the MCU's
18 # available SPI pins, board.SCK, board.MOSI, board.MISO
19 spi = board.SPI() # init spi bus object
20

21 # we'll be using the dynamic payload size feature (enabled by default)
22 # initialize the nRF24L01 on the spi bus object
23 nrf = RF24(spi, csn, ce)
24

25 def master(count=5): # count = 5 will only transmit 5 packets
26 """Transmits an incrementing integer every second"""
27 # set address of RX node into a TX pipe
28 nrf.open_tx_pipe(address)
29 # ensures the nRF24L01 is in TX mode
30 nrf.listen = False
31

32 while count:
33 # use struct.pack to packetize your data
34 # into a usable payload
35 buffer = struct.pack('<i', count)
36 # 'i' means a single 4 byte int value.
37 # '<' means little endian byte order. this may be optional
38 print("Sending: {} as struct: {}".format(count, buffer))
39 now = time.monotonic() * 1000 # start timer
40 result = nrf.send(buffer)
41 if result is None:
42 print('send() timed out')
43 elif not result:
44 print('send() failed')
45 else:
46 print('send() successful')
47 # print timer results despite transmission success
48 print('Transmission took',
49 time.monotonic() * 1000 - now, 'ms')
50 time.sleep(1)
51 count -= 1
52

53 def slave(count=3):
54 """Polls the radio and prints the received value. This method expires
55 after 6 seconds of no received transmission"""
56 # set address of TX node into an RX pipe. NOTE you MUST specify
57 # which pipe number to use for RX, we'll be using pipe 0
58 # pipe number options range [0,5]
59 # the pipe numbers used during a transition don't have to match
60 nrf.open_rx_pipe(0, address)
61 nrf.listen = True # put radio into RX mode and power up
62

63 start = time.monotonic()
64 while count and (time.monotonic() - start) < 6:
65 if nrf.any():

(continues on next page)

14 Chapter 5. Sphinx documentation

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

66 # print details about the received packet (if any)
67 print("Found {} bytes on pipe {}\
68 ".format(repr(nrf.any()), nrf.pipe()))
69 # retreive the received packet's payload
70 rx = nrf.recv() # clears flags & empties RX FIFO
71 # expecting an int, thus the string format '<i'
72 buffer = struct.unpack('<i', rx)
73 # print the only item in the resulting tuple from
74 # using `struct.unpack()`
75 print("Received: {}, Raw: {}".format(buffer[0], repr(rx)))
76 start = time.monotonic()
77 count -= 1
78 # this will listen indefinitely till count == 0
79 time.sleep(0.25)
80

81 # recommended behavior is to keep in TX mode while idle
82 nrf.listen = False # put the nRF24L01 is in TX mode
83

84 print("""\
85 nRF24L01 Simple test.\n\
86 Run slave() on receiver\n\
87 Run master() on transmitter""")

5.1.2 ACK Payloads Example

This is a test to show how to use custom acknowledgment payloads.

Listing 2: examples/nrf24l01_ack_payload_test.py

1 """
2 Simple example of using the library to transmit
3 and retrieve custom automatic acknowledgment payloads.
4 """
5 import time
6 import board
7 import digitalio as dio
8 from circuitpython_nrf24l01 import RF24
9

10 # change these (digital output) pins accordingly
11 ce = dio.DigitalInOut(board.D4)
12 csn = dio.DigitalInOut(board.D5)
13

14 # using board.SPI() automatically selects the MCU's
15 # available SPI pins, board.SCK, board.MOSI, board.MISO
16 spi = board.SPI() # init spi bus object
17

18 # we'll be using the dynamic payload size feature (enabled by default)
19 # the custom ACK payload feature is disabled by default
20 # the custom ACK payload feature should not be enabled
21 # during instantiation due to its singular use nature
22 # meaning 1 ACK payload per 1 RX'd payload
23 nrf = RF24(spi, csn, ce)
24

25 # NOTE the the custom ACK payload feature will be enabled
26 # automatically when you call load_ack() passing:

(continues on next page)

5.1. Table of Contents 15

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

27 # a buffer protocol object (bytearray) of
28 # length ranging [1,32]. And pipe number always needs
29 # to be an int ranging [0,5]
30

31 # to enable the custom ACK payload feature
32 nrf.ack = True # False disables again
33

34 # addresses needs to be in a buffer protocol object (bytearray)
35 address = b'1Node'
36

37 # payloads need to be in a buffer protocol object (bytearray)
38 tx = b'Hello '
39

40 # NOTE ACK payloads (like regular payloads and addresses)
41 # need to be in a buffer protocol object (bytearray)
42 ACK = b'World '
43

44 def master(count=5): # count = 5 will only transmit 5 packets
45 """Transmits a dummy payload every second and prints the ACK payload"""
46 # recommended behavior is to keep in TX mode while idle
47 nrf.listen = False # put radio in TX mode
48

49 # set address of RX node into a TX pipe
50 nrf.open_tx_pipe(address)
51

52 while count:
53 buffer = tx + bytes([count + 48]) # output buffer
54 print("Sending (raw): {}".format(repr(buffer)))
55 # to read the ACK payload during TX mode we
56 # pass the parameter read_ack as True.
57 nrf.ack = True # enable feature before send()
58 now = time.monotonic() * 1000 # start timer
59 result = nrf.send(buffer) # becomes the response buffer
60 if result is None:
61 print('send() timed out')
62 elif not result:
63 print('send() failed')
64 else:
65 # print the received ACK that was automatically
66 # fetched and saved to "buffer" via send()
67 print('raw ACK: {}'.format(repr(result)))
68 # the ACK payload should now be in buffer
69 # print timer results despite transmission success
70 print('Transmission took',
71 time.monotonic() * 1000 - now, 'ms')
72 time.sleep(1)
73 count -= 1
74

75 def slave(count=3):
76 """Prints the received value and sends a dummy ACK payload"""
77 # set address of TX node into an RX pipe. NOTE you MUST specify
78 # which pipe number to use for RX, we'll be using pipe 0
79 nrf.open_rx_pipe(0, address)
80

81 # put radio into RX mode, power it up, and set the first
82 # transmission's ACK payload and pipe number
83 nrf.listen = True

(continues on next page)

16 Chapter 5. Sphinx documentation

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

84 buffer = ACK + bytes([count + 48])
85 # we must set the ACK payload data and corresponding
86 # pipe number [0,5]
87 nrf.load_ack(buffer, 0) # load ACK for first response
88

89 start = time.monotonic()
90 while count and (time.monotonic() - start) < (count * 2):
91 if nrf.any():
92 # this will listen indefinitely till count == 0
93 count -= 1
94 # print details about the received packet (if any)
95 print("Found {} bytes on pipe {}\
96 ".format(repr(nrf.any()), nrf.pipe()))
97 # retreive the received packet's payload
98 rx = nrf.recv() # clears flags & empties RX FIFO
99 print("Received (raw): {}".format(repr(rx)))

100 start = time.monotonic()
101 if count: # Going again?
102 # build new ACK
103 buffer = ACK + bytes([count + 48])
104 # load ACK for next response
105 nrf.load_ack(buffer, 0)
106

107 # recommended behavior is to keep in TX mode while idle
108 nrf.listen = False # put radio in TX mode
109 nrf.flush_tx() # flush any ACK payload
110

111

112 print("""\
113 nRF24L01 ACK test\n\
114 Run slave() on receiver\n\
115 Run master() on transmitter""")

5.1.3 IRQ Pin Example

This is a test to show how to use nRF24L01’s interrupt pin.

Listing 3: examples/nrf24l01_interrupt_test.py

1 """
2 Simple example of detecting (and verifying) the IRQ
3 interrupt pin on the nRF24L01
4 """
5 import time
6 import board
7 import digitalio as dio
8 from circuitpython_nrf24l01 import RF24
9

10 # address needs to be in a buffer protocol object (bytearray is preferred)
11 address = b'1Node'
12

13 # select your digital input pin that's connected to the IRQ pin on the nRF4L01
14 irq = dio.DigitalInOut(board.D4)
15 irq.switch_to_input() # make sure its an input object
16 # change these (digital output) pins accordingly

(continues on next page)

5.1. Table of Contents 17

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

17 ce = dio.DigitalInOut(board.D4)
18 csn = dio.DigitalInOut(board.D5)
19

20 # using board.SPI() automatically selects the MCU's
21 # available SPI pins, board.SCK, board.MOSI, board.MISO
22 spi = board.SPI() # init spi bus object
23

24 # we'll be using the dynamic payload size feature (enabled by default)
25 # initialize the nRF24L01 on the spi bus object
26 nrf = RF24(spi, csn, ce)
27 nrf.arc = 15 # turn up automatic retries to the max. default is 3
28

29 def master(timeout=5): # will only wait 5 seconds for slave to respond
30 """Transmits once, receives once, and intentionally fails a transmit"""
31 # set address of RX node into a TX pipe
32 nrf.open_tx_pipe(address)
33 # ensures the nRF24L01 is in TX mode
34 nrf.listen = 0
35

36 # on data sent test
37 print("Pinging: enslaved nRF24L01 without auto_ack")
38 nrf.write(b'ping')
39 time.sleep(0.00001) # mandatory 10 microsecond pulse starts transmission
40 nrf.ce.value = 0 # end 10 us pulse; now in active TX
41 while not nrf.irq_DS and not nrf.irq_DF:
42 nrf.update() # updates the current status on IRQ flags
43 if nrf.irq_DS and not irq.value:
44 print('interrupt on data sent successful')
45 else:
46 print(
47 'IRQ on data sent is not active, check your wiring and call interrupt_

→˓config()')
48 nrf.clear_status_flags() # clear all flags for next test
49

50 # on data ready test
51 nrf.listen = 1
52 nrf.open_rx_pipe(0, address)
53 start = time.monotonic()
54 while not nrf.any() and time.monotonic() - start < timeout: # wait for slave to

→˓send
55 pass
56 if nrf.any():
57 print('Pong received')
58 if nrf.irq_DR and not irq.value:
59 print('interrupt on data ready successful')
60 else:
61 print(
62 'IRQ on data ready is not active, check your wiring and call

→˓interrupt_config()')
63 nrf.flush_rx()
64 else:
65 print('pong reception timed out!. make sure to run slave() on the other

→˓nRF24L01')
66 nrf.clear_status_flags() # clear all flags for next test
67

68 # on data fail test
69 nrf.listen = False # put the nRF24L01 is in TX mode

(continues on next page)

18 Chapter 5. Sphinx documentation

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

70 # the writing pipe should still be open since we didn't call close_tx_pipe()
71 nrf.flush_tx() # just in case the previous "on data sent" test failed
72 nrf.write(b'dummy') # slave isn't listening anymore
73 time.sleep(0.00001) # mandatory 10 microsecond pulse starts transmission
74 nrf.ce.value = 0 # end 10 us pulse; now in active TX
75 while not nrf.irq_DS and not nrf.irq_DF: # these attributes don't update

→˓themselves
76 nrf.update() # updates the current status on all IRQ flags (irq_DR, irq_DF,

→˓irq_DS)
77 if nrf.irq_DF and not irq.value:
78 print('interrupt on data fail successful')
79 else:
80 print(
81 'IRQ on data fail is not active, check your wiring and call interrupt_

→˓config()')
82 nrf.clear_status_flags() # clear all flags for next test
83

84 def slave(timeout=10): # will listen for 10 seconds before timing out
85 """Acts as a ponging RX node to successfully complete the tests on the master"""
86 # setup radio to recieve ping
87 nrf.open_rx_pipe(0, address)
88 nrf.listen = 1
89 start = time.monotonic()
90 while not nrf.any() and time.monotonic() - start < timeout:
91 pass # nrf.any() also updates the status byte on every call
92 if nrf.any():
93 print("ping received. sending pong now.")
94 else:
95 print('listening timed out, please try again')
96 nrf.flush_rx()
97 nrf.listen = 0
98 nrf.open_tx_pipe(address)
99 nrf.send(b'pong') # send a payload to complete the on data ready test

100 # we're done on this side
101

102 print("""\
103 nRF24L01 Interrupt test\n\
104 Run master() to run IRQ pin tests\n\
105 Run slave() on the non-testing nRF24L01 to complete the test successfully""")

5.1.4 Stream Example

This is a test to show how to use the send() to transmit multiple payloads.

Listing 4: examples/nrf24l01_stream_test.py

1 """
2 Example of library usage for streaming multiple payloads.
3 """
4 import time
5 import board
6 import digitalio as dio
7 from circuitpython_nrf24l01 import RF24
8

9 # addresses needs to be in a buffer protocol object (bytearray)

(continues on next page)

5.1. Table of Contents 19

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

10 address = b'1Node'
11

12 # change these (digital output) pins accordingly
13 ce = dio.DigitalInOut(board.D4)
14 csn = dio.DigitalInOut(board.D5)
15

16 # using board.SPI() automatically selects the MCU's
17 # available SPI pins, board.SCK, board.MOSI, board.MISO
18 spi = board.SPI() # init spi bus object
19

20 # we'll be using the dynamic payload size feature (enabled by default)
21 # initialize the nRF24L01 on the spi bus object
22 nrf = RF24(spi, csn, ce)
23

24 # lets create a list of payloads to be streamed to the nRF24L01 running slave()
25 buffers = []
26 SIZE = 32 # we'll use SIZE for the number of payloads in the list and the payloads'

→˓length
27 for i in range(SIZE):
28 buff = b''
29 for j in range(SIZE):
30 buff += bytes([(j >= SIZE / 2 + abs(SIZE / 2 - i) or j <
31 SIZE / 2 - abs(SIZE / 2 - i)) + 48])
32 buffers.append(buff)
33 del buff
34

35 def master(count=1): # count = 5 will transmit the list 5 times
36 """Transmits a massive buffer of payloads"""
37 # set address of RX node into a TX pipe
38 nrf.open_tx_pipe(address)
39 # ensures the nRF24L01 is in TX mode
40 nrf.listen = False
41

42 success_percentage = 0
43 for _ in range(count):
44 now = time.monotonic() * 1000 # start timer
45 result = nrf.send(buffers)
46 print('Transmission took', time.monotonic() * 1000 - now, 'ms')
47 for r in result:
48 success_percentage += 1 if r else 0
49 success_percentage /= SIZE * count
50 print('successfully sent', success_percentage * 100, '%')
51

52 def slave(timeout=5):
53 """Stops listening after timeout with no response"""
54 # set address of TX node into an RX pipe. NOTE you MUST specify
55 # which pipe number to use for RX, we'll be using pipe 0
56 # pipe number options range [0,5]
57 # the pipe numbers used during a transition don't have to match
58 nrf.open_rx_pipe(0, address)
59 nrf.listen = True # put radio into RX mode and power up
60

61 count = 0
62 now = time.monotonic() # start timer
63 while time.monotonic() < now + timeout:
64 if nrf.any():
65 count += 1

(continues on next page)

20 Chapter 5. Sphinx documentation

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

66 # retreive the received packet's payload
67 rx = nrf.recv() # clears flags & empties RX FIFO
68 print("Received (raw): {} - {}".format(repr(rx), count))
69 now = time.monotonic()
70

71 # recommended behavior is to keep in TX mode while idle
72 nrf.listen = False # put the nRF24L01 is in TX mode
73

74 print("""\
75 nRF24L01 Stream test\n\
76 Run slave() on receiver\n\
77 Run master() on transmitter""")

5.1.5 Context Example

This is a test to show how to use “with” statements to manage multiple different nRF24L01 configurations on 1
transceiver.

Listing 5: examples/nrf24l01_context_test.py

1 """
2 Simple example of library usage in context.
3 This will not transmit anything, but rather
4 display settings after changing contexts (& thus configurations)
5 """
6 import board
7 import digitalio as dio
8 from circuitpython_nrf24l01 import RF24
9

10 # change these (digital output) pins accordingly
11 ce = dio.DigitalInOut(board.D4)
12 csn = dio.DigitalInOut(board.D5)
13

14 # using board.SPI() automatically selects the MCU's
15 # available SPI pins, board.SCK, board.MOSI, board.MISO
16 spi = board.SPI() # init spi bus object
17

18 # initialize the nRF24L01 objects on the spi bus object
19 nrf = RF24(spi, csn, ce, ack=True)
20 # the first object will have all the features enabled
21 # including the option to use custom ACK payloads
22

23 # the second object has most features disabled/altered
24 # disabled dynamic_payloads, but still using enabled auto_ack
25 # the IRQ pin is configured to only go active on "data fail"
26 # using a different channel: 2 (default is 76)
27 # CRC is set to 1 byte long
28 # data rate is set to 2 Mbps
29 # payload length is set to 8 bytes
30 # NOTE address length is set to 3 bytes
31 # RF power amplifier is set to -12 dbm
32 # automatic retry attempts is set to 15 (maximum allowed)
33 # automatic retry delay (between attempts) is set to 1000 microseconds
34 basicRF = RF24(spi, csn, ce,
35 dynamic_payloads=False, irq_DR=False, irq_DS=False,

(continues on next page)

5.1. Table of Contents 21

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

36 channel=2, crc=1, data_rate=2, payload_length=8,
37 address_length=3, pa_level=-12, ard=1000, arc=15)
38

39 print("\nsettings configured by the nrf object")
40 with nrf:
41 nrf.open_rx_pipe(5, b'1Node') # NOTE we do this inside the "with" block
42 # only the first character gets written because it is on a pipe_number > 1
43 # NOTE if opening pipes outside of the "with" block, you may encounter
44 # conflicts in the differences between address_length attributes.
45 # the address_length attribute must equal the length of addresses
46

47 # display current settings of the nrf object
48 nrf.what_happened(True) # True dumps pipe info
49

50 print("\nsettings configured by the basicRF object")
51 with basicRF as nerf: # the "as nerf" part is optional
52 nerf.open_rx_pipe(2, b'SOS') # again only uses the first character
53 nerf.what_happened(1)
54

55 # if you examine the outputs from what_happened() you'll see:
56 # pipe 5 is opened using the nrf object, but closed using the basicRF object.
57 # pipe 2 is closed using the nrf object, but opened using the basicRF object.
58 # this is because the "with" statements load the existing settings
59 # for the RF24 object specified after the word "with".
60

61 # the things that remain consistent despite the use of "with"
62 # statements includes the power mode (standby or sleep), and
63 # primary role (RX/TX mode)
64 # NOTE this library uses the adresses' reset values and closes all pipes upon
65 # instantiation

5.1.6 Working with TMRh20’s Arduino library

This test is meant to prove compatibility with the popular Arduino library for the nRF24L01 by TMRh20 (available for
install via the Arduino IDE’s Library Manager). The following code has been designed/test with the TMRh20 library
example named “GettingStarted_HandlingData.ino”.

Listing 6: examples/nrf24l01_2arduino_handling_data.py

1 """
2 Example of library driving the nRF24L01 to communicate with a nRF24L01 driven by
3 the TMRh20 Arduino library. The Arduino program/sketch that this example was
4 designed for is named GettingStarted_HandlingData.ino and can be found in the "RF24"
5 examples after the TMRh20 library is installed from the Arduino Library Manager.
6 """
7 import time
8 import struct
9 import board

10 import digitalio as dio
11 from circuitpython_nrf24l01 import RF24
12

13 # addresses needs to be in a buffer protocol object (bytearray)
14 address = [b'1Node', b'2Node']
15

16 # change these (digital output) pins accordingly
(continues on next page)

22 Chapter 5. Sphinx documentation

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

17 ce = dio.DigitalInOut(board.D4)
18 csn = dio.DigitalInOut(board.D5)
19

20 # using board.SPI() automatically selects the MCU's
21 # available SPI pins, board.SCK, board.MOSI, board.MISO
22 spi = board.SPI() # init spi bus object
23

24 # initialize the nRF24L01 on the spi bus object
25 nrf = RF24(spi, csn, ce, ask_no_ack=False)
26 nrf.dynamic_payloads = False # this is the default in the TMRh20 arduino library
27

28 # set address of TX node into a RX pipe
29 nrf.open_rx_pipe(1, address[1])
30 # set address of RX node into a TX pipe
31 nrf.open_tx_pipe(address[0])
32

33 def master(count=5): # count = 5 will only transmit 5 packets
34 """Transmits an arbitrary unsigned long value every second. This method
35 will only try to transmit (count) number of attempts"""
36

37 # for the "HandlingData" part of the test from the TMRh20 library example
38 float_value = 0.01
39 while count:
40 nrf.listen = False # ensures the nRF24L01 is in TX mode
41 print("Now Sending")
42 start_timer = int(time.monotonic() * 1000) # start timer
43 # use struct.pack to packetize your data into a usable payload
44 # '<' means little endian byte order.
45 # 'L' means a single 4 byte unsigned long value.
46 # 'f' means a single 4 byte float value.
47 buffer = struct.pack('<Lf', start_timer, float_value)
48 result = nrf.send(buffer)
49 if result is None:
50 print('send() timed out')
51 elif not result:
52 print('send() failed')
53 else:
54 nrf.listen = True # get radio ready to receive a response
55 timeout = True # used to determine if response timed out
56 while time.monotonic() * 1000 - start_timer < 200:
57 # the arbitrary 200 ms timeout value is also used in the TMRh20

→˓example
58 if nrf.any():
59 end_timer = time.monotonic() * 1000 # end timer
60 rx = nrf.recv()
61 rx = struct.unpack('<Lf', rx[:8])
62 timeout = False # skips timeout prompt
63 # print total time to send and receive data
64 print('Sent', struct.unpack('<Lf', buffer), 'Got Response:', rx)
65 print('Round-trip delay:', end_timer - start_timer, 'ms')
66 float_value = rx[1] # save float value for next iteration
67 break
68 if timeout:
69 print("failed to get a response; timed out")
70 count -= 1
71 time.sleep(1)
72

(continues on next page)

5.1. Table of Contents 23

nRF24L01 Library Documentation, Release 1.0

(continued from previous page)

73 def slave(count=3):
74 """Polls the radio and prints the received value. This method expires
75 after 6 seconds of no received transmission"""
76 start_timer = time.monotonic()
77 while count and (time.monotonic() - start_timer) < 6:
78 nrf.listen = True # put radio into RX mode and power up
79 if nrf.any():
80 # retreive the received packet's payload
81 buffer = nrf.recv() # clears flags & empties RX FIFO
82 # increment floating value as part of the "HandlingData" test
83 float_value = struct.unpack('<f', buffer[4:8])[0] + 0.01
84 nrf.listen = False # ensures the nRF24L01 is in TX mode
85 start_timer = time.monotonic() # in seconds
86 # echo buffer[:4] appended with incremented float
87 result = nrf.send(buffer[:4] + struct.pack('<f', float_value))
88 end_timer = time.monotonic() * 1000 # in milliseconds
89 # expecting an unsigned long & a float, thus the string format '<Lf'
90 rx = struct.unpack('<Lf', buffer[:8]) # "[:8]" ignores the padded 0s
91 # print the unsigned long and float data sent in the response
92 print("Responding: {}, {}".format(rx[0], rx[1] + 0.01))
93 if result is None:
94 print('response timed out')
95 elif not result:
96 print('response failed')
97 else:
98 # print timer results on transmission success
99 print('successful response took', end_timer - start_timer * 1000, 'ms

→˓')
100 # this will listen indefinitely till counter == 0
101 count -= 1
102 # recommended behavior is to keep in TX mode when in idle
103 nrf.listen = False # put the nRF24L01 in TX mode + Standby-I power state
104

105 print("""\
106 nRF24L01 communicating with an Arduino running the\n\
107 TMRh20 library's "GettingStarted_HandlingData.ino" example.\n\
108 Run slave() on receiver\n\
109 Run master() on transmitter""")

5.1.7 RF24 class

Important: The nRF24L01 has 3 key features that can be interdependent of each other. Their priority of dependence
is as follows:

1. dynamic_payloads feature allowing either TX/RX nRF24L01 to be able to send/receive payloads with
their size written into the payloads’ packet. With this disabled, both RX/TX nRF24L01 must use matching
payload_length attributes.

2. auto_ack feature provides transmission verification by using the RX nRF24L01 to automatically and imedi-
atedly send an acknowledgment (ACK) packet in response to freshly received payloads. auto_ack does not
require dynamic_payloads to be enabled.

3. ack feature allows the MCU to append a payload to the ACK packet, thus instant bi-directional communication.
A transmitting ACK payload must be loaded into the nRF24L01’s TX FIFO buffer (done using load_ack())

24 Chapter 5. Sphinx documentation

nRF24L01 Library Documentation, Release 1.0

BEFORE receiving the payload that is to be acknowledged. Once transmitted, the payload is released from the
TX FIFO buffer. This feature requires the auto_ack and dynamic_payloads features enabled.

Remeber that the nRF24L01’s FIFO (first-in,first-out) buffer has 3 levels. This means that there can be up to 3 payloads
waiting to be read (RX) and up to 3 payloads waiting to be transmit (TX).

With the auto_ack feature enabled you get:

• cycle redundancy checking (crc) automatically enabled

• to change amount of automatic re-transmit attempts and the delay time between them. See the arc and ard
attributes.

Note: A word on pipes vs addresses vs channels.

You should think of the data pipes as a vehicle that you (the payload) get into. Continuing the analogy, the specified
address is not the address of an nRF24L01 radio, rather it is more like a route that connects the endpoints. There are
only six data pipes on the nRF24L01, thus it can simultaneously listen to a maximum of 6 other nRF24L01 radios
(can only talk to 1 at a time). When assigning addresses to a data pipe, you can use any 5 byte long address you can
think of (as long as the last byte is unique among simultaneously broadcasting addresses), so you’re not limited to
communicating to the same 6 radios (more on this when we support “Multiciever” mode). Also the radio’s channel is
not be confused with the radio’s pipes. Channel selection is a way of specifying a certain radio frequency (frequency
= [2400 + channel] MHz). Channel defaults to 76 (like the arduino library), but options range from 0 to 125 – that’s
2.4 GHz to 2.525 GHz. The channel can be tweaked to find a less occupied frequency amongst (Bluetooth & WiFi)
ambient signals.

Warning: For successful transmissions, most of the endpoint trasceivers’ settings/features must match. These
settings/features include:

• The RX pipe’s address on the receiving nRF24L01 MUST match the TX pipe’s address on the transmitting
nRF24L01

• address_length

• channel

• data_rate

• dynamic_payloads

• payload_length only when dynamic_payloads is disabled

• auto_ack

• custom ack payloads

• crc

In fact the only attributes that aren’t required to match on both endpoint transceivers would be the identifying data
pipe number (passed to open_rx_pipe()), pa_level, arc, & ard attributes. The ask_no_ack feature
can be used despite the settings/features configuration (see send() & write() function parameters for more
details).

5.1. Table of Contents 25

nRF24L01 Library Documentation, Release 1.0

5.1.7.1 Basic API

class circuitpython_nrf24l01.rf24.RF24(spi, csn, ce, channel=76, payload_length=32,
address_length=5, ard=1500, arc=3, crc=2,
data_rate=1, pa_level=0, dynamic_payloads=True,
auto_ack=True, ask_no_ack=True, ack=False,
irq_DR=True, irq_DS=True, irq_DF=True)

A driver class for the nRF24L01(+) transceiver radios. This class aims to be compatible with other devices in the
nRF24xxx product line that implement the Nordic proprietary Enhanced ShockBurst Protocol (and/or the legacy
ShockBurst Protocol), but officially only supports (through testing) the nRF24L01 and nRF24L01+ devices.

Parameters

• spi (SPI) – The object for the SPI bus that the nRF24L01 is connected to.

Tip: This object is meant to be shared amongst other driver classes (like
adafruit_mcp3xxx.mcp3008 for example) that use the same SPI bus. Otherwise, multiple
devices on the same SPI bus with different spi objects may produce errors or undesirable
behavior.

• csn (DigitalInOut) – The digital output pin that is connected to the nRF24L01’s CSN
(Chip Select Not) pin. This is required.

• ce (DigitalInOut) – The digital output pin that is connected to the nRF24L01’s CE
(Chip Enable) pin. This is required.

• channel (int) – This is used to specify a certain radio frequency that the nRF24L01 uses.
Defaults to 76 and can be changed at any time by using the channel attribute.

• payload_length (int) – This is the length (in bytes) of a single payload to be trans-
mitted or received. This is ignored if the dynamic_payloads attribute is enabled. De-
faults to 32 and must be in range [1,32]. This can be changed at any time by using the
payload_length attribute.

• address_length (int) – This is the length (in bytes) of the addresses that are assigned
to the data pipes for transmitting/receiving. Defaults to 5 and must be in range [3,5]. This
can be changed at any time by using the address_length attribute.

• ard (int) – This specifies the delay time (in µs) between attempts to automatically re-
transmit. This can be changed at any time by using the ard attribute. This parameter must
be a multiple of 250 in the range [250,4000]. Defualts to 1500 µs.

• arc (int) – This specifies the automatic re-transmit count (maximum number of automat-
ically attempts to re-transmit). This can be changed at any time by using the arc attribute.
This parameter must be in the range [0,15]. Defaults to 3.

• crc (int) – This parameter controls the CRC setting of transmitted packets. Options are
0 (off), 1 or 2 (byte long CRC enabled). This can be changed at any time by using the crc
attribute. Defaults to 2.

• data_rate (int) – This parameter controls the RF data rate setting of transmissions.
Options are 1 (Mbps), 2 (Mbps), or 250 (Kbps). This can be changed at any time by using
the data_rate attribute. Defaults to 1.

• pa_level (int) – This parameter controls the RF power amplifier setting of transmis-
sions. Options are 0 (dBm), -6 (dBm), -12 (dBm), or -18 (dBm). This can be changed at
any time by using the pa_level attribute. Defaults to 0.

26 Chapter 5. Sphinx documentation

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

nRF24L01 Library Documentation, Release 1.0

• dynamic_payloads (bool) – This parameter enables/disables the dynamic payload
length feature of the nRF24L01. Defaults to enabled. This can be changed at any time
by using the dynamic_payloads attribute.

• auto_ack (bool) – This parameter enables/disables the automatic acknowledgment
(ACK) feature of the nRF24L01. Defaults to enabled if dynamic_payloads is enabled.
This can be changed at any time by using the auto_ack attribute.

• ask_no_ack (bool) – This represents a special flag that has to be thrown to enable a
feature specific to individual payloads. Setting this parameter only enables access to this
feature; it does not invoke it (see parameters for send() or write() functions). En-
abling/Disabling this does not affect auto_ack attribute.

• ack (bool) – This represents a special flag that has to be thrown to enable a feature allow-
ing custom response payloads appended to the ACK packets. Enabling this also requires the
auto_ack attribute enabled. This can be changed at any time by using the ack attribute.

• irq_DR (bool) – When “Data is Ready”, this configures the interrupt (IRQ) trigger of the
nRF24L01’s IRQ pin (active low). Defaults to enabled. This can be changed at any time by
using the interrupt_config() function.

• irq_DS (bool) – When “Data is Sent”, this configures the interrupt (IRQ) trigger of the
nRF24L01’s IRQ pin (active low). Defaults to enabled. This can be changed at any time by
using the interrupt_config() function.

• irq_DF (bool) – When “max retry attempts are reached” (specified by the arc attribute),
this configures the interrupt (IRQ) trigger of the nRF24L01’s IRQ pin (active low) and
represents transmission failure. Defaults to enabled. This can be changed at any time by
using the interrupt_config() function.

address_length
This int attribute specifies the length (in bytes) of addresses to be used for RX/TX pipes. The addresses
assigned to the data pipes must have byte length equal to the value set for this attribute.

A valid input value must be an int in range [3,5]. Otherwise a ValueError exception is thrown.
Default is set to the nRF24L01’s maximum of 5.

open_tx_pipe(address)
This function is used to open a data pipe for OTA (over the air) TX transmissions.

Parameters address (bytearray) – The virtual address of the receiving nRF24L01. This
must have a length equal to the address_length attribute (see address_length at-
tribute). Otherwise a ValueError exception is thrown. The address specified here must
match the address set to one of the RX data pipes of the receiving nRF24L01.

Note: There is no option to specify which data pipe to use because the nRF24L01 only uses data pipe 0
in TX mode. Additionally, the nRF24L01 uses the same data pipe (pipe 0) for receiving acknowledgement
(ACK) packets in TX mode when the auto_ack attribute is enabled. Thus, RX pipe 0 is appropriated
with the TX address (specified here) when auto_ack is set to True.

close_rx_pipe(pipe_number, reset=True)
This function is used to close a specific data pipe from OTA (over the air) RX transmissions.

Parameters

• pipe_number (int) – The data pipe to use for RX transactions. This must be in range
[0,5]. Otherwise a ValueError exception is thrown.

5.1. Table of Contents 27

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError

nRF24L01 Library Documentation, Release 1.0

• reset (bool) – True resets the address for the specified pipe_number to the
factory address (different for each pipe). False leaves the address on the specified
pipe_number alone. Be aware that the addresses will remain despite loss of power.

open_rx_pipe(pipe_number, address)
This function is used to open a specific data pipe for OTA (over the air) RX transmissions. If
dynamic_payloads attribute is False, then the payload_length attribute is used to specify the
expected length of the RX payload on the specified data pipe.

Parameters

• pipe_number (int) – The data pipe to use for RX transactions. This must be in range
[0,5]. Otherwise a ValueError exception is thrown.

• address (bytearray) – The virtual address to the receiving nRF24L01. This must
have a byte length equal to the address_length attribute. Otherwise a ValueError
exception is thrown. If using a pipe_number greater than 1, then only the MSByte
of the address is written, so make sure MSByte (first character) is unique among other
simultaneously receiving addresses).

Note: The nRF24L01 shares the addresses’ LSBytes (address[1:5]) on data pipes 2 through 5. These
shared LSBytes are determined by the address set to pipe 1.

listen
An attribute to represent the nRF24L01 primary role as a radio.

Setting this attribute incorporates the proper transitioning to/from RX mode as it involves playing with the
power attribute and the nRF24L01’s CE pin. This attribute does not power down the nRF24L01, but will
power it up when needed; use power attribute set to False to put the nRF24L01 to sleep.

A valid input value is a bool in which:

True enables RX mode. Additionally, per Appendix B of the nRF24L01+ Specifications Sheet,
this attribute flushes the RX FIFO, clears the irq_DR status flag, and puts nRF24L01 in power
up mode. Notice the CE pin is be held HIGH during RX mode.

False disables RX mode. As mentioned in above link, this puts nRF24L01’s power in Standby-
I (CE pin is LOW meaning low current & no transmissions) mode which is ideal for post-
reception work. Disabing RX mode doesn’t flush the RX/TX FIFO buffers, so remember to
flush your 3-level FIFO buffers when appropriate using flush_tx() or flush_rx() (see
also the recv() function).

any()
This function checks if the nRF24L01 has received any data at all. Internally, this function uses pipe()
then reports the next available payload’s length (in bytes) – if there is any.

Returns

• int of the size (in bytes) of an available RX payload (if any).

• 0 if there is no payload in the RX FIFO buffer.

recv()
This function is used to retrieve the next available payload in the RX FIFO buffer, then clears the irq_DR
status flag. This function also serves as a helper function to read_ack() in TX mode to aquire any cus-
tom payload in the automatic acknowledgement (ACK) packet – only when the ack attribute is enabled.

Returns

A bytearray of the RX payload data

28 Chapter 5. Sphinx documentation

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1091756
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bytearray

nRF24L01 Library Documentation, Release 1.0

• If the dynamic_payloads attribute is disabled, then the returned bytearray’s length is
equal to the user defined payload_length attribute (which defaults to 32).

• If the dynamic_payloads attribute is enabled, then the returned bytearray’s length is
equal to the payload’s length

Tip: Call the any() function before calling recv() to verify that there is data to fetch. If there’s no
data to fetch, then the nRF24L01 returns bogus data and should not regarded as a valid payload.

send(buf, ask_no_ack=False)
This blocking function is used to transmit payload(s).

Returns

• list if a list or tuple of payloads was passed as the buf parameter. Each item in the
returned list will contain the returned status for each corresponding payload in the list/tuple
that was passed. The return statuses will be in one of the following forms:

• False if transmission fails.

• True if transmission succeeds.

• bytearray when the ack attribute is True, the payload expects a responding custom
ACK payload; the response is returned (upon successful transmission) as a bytearray.
Empty ACK payloads (upon successful transmission) when the ack attribute is set True
are replaced with an error message b'NO ACK RETURNED'.

• None if transmission times out meaning nRF24L01 has malfunctioned. This condition is
very rare. The allowed time for transmission is calculated using table 18 in the nRF24L01
specification sheet

Parameters

• buf (bytearray,list,tuple) – The payload to transmit. This bytearray must have
a length greater than 0 and less than 32, otherwise a ValueError exception is thrown.
This can also be a list or tuple of payloads (bytearray); in which case, all items in the
list/tuple are processed for consecutive transmissions.

– If the dynamic_payloads attribute is disabled and this bytearray’s length is less
than the payload_length attribute, then this bytearray is padded with zeros until its
length is equal to the payload_length attribute.

– If the dynamic_payloads attribute is disabled and this bytearray’s length is greater
than payload_length attribute, then this bytearray’s length is truncated to equal the
payload_length attribute.

• ask_no_ack (bool) – Pass this parameter as True to tell the nRF24L01 not to wait
for an acknowledgment from the receiving nRF24L01. This parameter directly controls
a NO_ACK flag in the transmission’s Packet Control Field (9 bits of information about
the payload). Therefore, it takes advantage of an nRF24L01 feature specific to individual
payloads, and its value is not saved anywhere. You do not need to specify this for ev-
ery payload if the auto_ack attribute is disabled, however this parameter should work
despite the auto_ack attribute’s setting.

Note: Each transmission is in the form of a packet. This packet contains sections of data
around and including the payload. See Chapter 7.3 in the nRF24L01 Specifications Sheet
for more details.

5.1. Table of Contents 29

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#None
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318

nRF24L01 Library Documentation, Release 1.0

Tip: It is highly recommended that auto_ack attribute is enabled when sending multiple payloads. Test
results with the auto_ack attribute disabled were very poor (much < 50% received). This same advice
applies to the ask_no_ack parameter (leave it as False for multiple payloads).

Warning: The nRF24L01 will block usage of the TX FIFO buffer upon failed transmissions.
Failed transmission’s payloads stay in TX FIFO buffer until the MCU calls flush_tx() and
clear_status_flags(). Therefore, this function will discard failed transmissions’ payloads
when sending a list or tuple of payloads, so it can continue to process through the list/tuple even if any
payload fails to be acknowledged.

Note: We’ve tried very hard to keep nRF24L01s driven by CircuitPython devices compliant with
nRF24L01s driven by the Raspberry Pi. But due to the Raspberry Pi’s seemingly slower SPI speeds, we’ve
had to resort to internally deploying resend() twice (at most when needed) for payloads that failed
during multi-payload processing. This tactic is meant to slow down CircuitPython devices just enough for
the Raspberry Pi to catch up. Transmission failures are less possible this way.

5.1.7.2 Advanced API

class circuitpython_nrf24l01.rf24.RF24

RF24.what_happened(dump_pipes=False)
This debuggung function aggregates and outputs all status/condition related information from the
nRF24L01. Some information may be irrelevant depending on nRF24L01’s state/condition.

Prints

• Channel The current setting of the channel attribute

• RF Data Rate The current setting of the RF data_rate attribute.

• RF Power Amplifier The current setting of the pa_level attribute.

• CRC bytes The current setting of the crc attribute

• Address length The current setting of the address_length attribute

• Payload lengths The current setting of the payload_length attribute

• Auto retry delay The current setting of the ard attribute

• Auto retry attempts The current setting of the arc attribute

• Packets Lost Total amount of packets lost (transmission failures)

• Retry Attempts Made Maximum amount of attempts to re-transmit during last
transmission (resets per payload)

• IRQ - Data Ready The current setting of the IRQ pin on “Data Ready” event

• IRQ - Data Sent The current setting of the IRQ pin on “Data Sent” event

• IRQ - Data Fail The current setting of the IRQ pin on “Data Fail” event

• Data Ready Is there RX data ready to be read? (state of the irq_DR flag)

30 Chapter 5. Sphinx documentation

https://docs.python.org/3.4/library/constants.html#False

nRF24L01 Library Documentation, Release 1.0

• Data Sent Has the TX data been sent? (state of the irq_DS flag)

• Data Failed Has the maximum attempts to re-transmit been reached? (state of the
irq_DF flag)

• TX FIFO full Is the TX FIFO buffer full? (state of the tx_full flag)

• TX FIFO empty Is the TX FIFO buffer empty?

• RX FIFO full Is the RX FIFO buffer full?

• RX FIFO empty Is the RX FIFO buffer empty?

• Custom ACK payload Is the nRF24L01 setup to use an extra (user defined) payload
attached to the acknowledgment packet? (state of the ack attribute)

• Ask no ACK Is the nRF24L01 setup to transmit individual packets that don’t require
acknowledgment?

• Automatic Acknowledgment Is the auto_ack attribute enabled?

• Dynamic Payloads Is the dynamic_payloads attribute enabled?

• Primary Mode The current mode (RX or TX) of communication of the nRF24L01
device.

• Power Mode The power state can be Off, Standby-I, Standby-II, or On.

Parameters dump_pipes (bool) – True appends the output and prints:

• the current address used for TX transmissions

• Pipe [#] ([open/closed]) bound: [address]where # represent the pipe
number, the open/closed status is relative to the pipe’s RX status, and address is
read directly from the nRF24L01 registers.

• if the pipe is open, then the output also prints expecting [X] byte static
payloads where X is the payload_length (in bytes) the pipe is setup to receive
when dynamic_payloads is disabled.

Default is False and skips this extra information.

RF24.dynamic_payloads
This bool attribute controls the nRF24L01’s dynamic payload length feature.

• True enables nRF24L01’s dynamic payload length feature. The payload_length attribute is
ignored when this feature is enabled.

• False disables nRF24L01’s dynamic payload length feature. Be sure to adjust the
payload_length attribute accordingly when dynamic_payloads feature is disabled.

RF24.payload_length
This int attribute specifies the length (in bytes) of payload that is regarded, meaning “how big of a
payload should the radio care about?” If the dynamic_payloads attribute is enabled, this attribute has
no affect. When dynamic_payloads is disabled, this attribute is used to specify the payload length
when entering RX mode.

A valid input value must be an int in range [1,32]. Otherwise a ValueError exception is thrown.
Default is set to the nRF24L01’s maximum of 32.

Note: When dynamic_payloads is disabled during transmissions:

• Payloads’ size of greater than this attribute’s value will be truncated to match.

• Payloads’ size of less than this attribute’s value will be padded with zeros to match.

5.1. Table of Contents 31

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError

nRF24L01 Library Documentation, Release 1.0

RF24.auto_ack
This bool attribute controls the nRF24L01’s automatic acknowledgment feature.

• True enables automatic acknowledgment packets. The CRC (cyclic redundancy checking) is enabled
automatically by the nRF24L01 if the auto_ack attribute is enabled (see also crc attribute).

• False disables automatic acknowledgment packets. The crc attribute will remain unaffected (re-
mains enabled) when disabling the auto_ack attribute.

RF24.irq_DR
A bool that represents the “Data Ready” interrupted flag. (read-only)

• True represents Data is in the RX FIFO buffer

• False represents anything depending on context (state/condition of FIFO buffers) – usually this
means the flag’s been reset.

Pass dataReady parameter as True to clear_status_flags() and reset this. As this is a virtual
representation of the interrupt event, this attribute will always be updated despite what the actual IRQ pin
is configured to do about this event.

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS
byte that’s always returned from any other SPI transactions. Use the update() function to manually
refresh this data when needed.

RF24.irq_DF
A bool that represents the “Data Failed” interrupted flag. (read-only)

• True signifies the nRF24L01 attemped all configured retries

• False represents anything depending on context (state/condition) – usually this means the flag’s
been reset.

Pass dataFail parameter as True to clear_status_flags() to reset this. As this is a virtual
representation of the interrupt event, this attribute will always be updated despite what the actual IRQ pin
is configured to do about this event.see also the arc and ard attributes.

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS
byte that’s always returned from any other SPI transactions. Use the update() function to manually
refresh this data when needed.

RF24.irq_DS
A bool that represents the “Data Sent” interrupted flag. (read-only)

• True represents a successful transmission

• False represents anything depending on context (state/condition of FIFO buffers) – usually this
means the flag’s been reset.

Pass dataSent parameter as True to clear_status_flags() to reset this. As this is a virtual
representation of the interrupt event, this attribute will always be updated despite what the actual IRQ pin
is configured to do about this event.

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS
byte that’s always returned from any other SPI transactions. Use the update() function to manually
refresh this data when needed.

RF24.clear_status_flags(data_recv=True, data_sent=True, data_fail=True)
This clears the interrupt flags in the status register. Internally, this is automatically called by send(),
write(), recv(), and when listen changes from False to True.

Parameters

32 Chapter 5. Sphinx documentation

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True

nRF24L01 Library Documentation, Release 1.0

• data_recv (bool) – specifies wheather to clear the “RX Data Ready” flag.

• data_sent (bool) – specifies wheather to clear the “TX Data Sent” flag.

• data_fail (bool) – specifies wheather to clear the “Max Re-transmit reached” flag.

Note: Clearing the data_fail flag is necessary for continued transmissions from the nRF24L01 (locks
the TX FIFO buffer when irq_DF is True) despite wheather or not the MCU is taking advantage of the
interrupt (IRQ) pin. Call this function only when there is an antiquated status flag (after you’ve dealt with
the specific payload related to the staus flags that were set), otherwise it can cause payloads to be ignored
and occupy the RX/TX FIFO buffers. See Appendix A of the nRF24L01+ Specifications Sheet for an
outline of proper behavior.

RF24.interrupt_config(data_recv=True, data_sent=True, data_fail=True)
Sets the configuration of the nRF24L01’s IRQ (interrupt) pin. The signal from the nRF24L01’s IRQ pin is
active LOW. (write-only)

Parameters

• data_recv (bool) – If this is True, then IRQ pin goes active when there is new data
to read in the RX FIFO buffer.

• data_sent (bool) – If this is True, then IRQ pin goes active when a payload from
TX buffer is successfully transmit.

• data_fail (bool) – If this is True, then IRQ pin goes active when maximum num-
ber of attempts to re-transmit the packet have been reached. If auto_ack attribute is
disabled, then this IRQ event is not used.

Note: To fetch the status (not configuration) of these IRQ flags, use the irq_DF, irq_DS, irq_DR
attributes respectively.

Tip: Paraphrased from nRF24L01+ Specification Sheet:

The procedure for handling data_recv IRQ should be:

1. read payload through recv()

2. clear dataReady status flag (taken care of by using recv() in previous step)

3. read FIFO_STATUS register to check if there are more payloads available in RX FIFO buffer. (a call
to pipe(), any() or even (False,True) as parameters to fifo() will get this result)

4. if there is more data in RX FIFO, repeat from step 1

RF24.ack
This bool attribute represents the status of the nRF24L01’s capability to use custom payloads as part of
the automatic acknowledgment (ACK) packet. Use this attribute to set/check if the custom ACK payloads
feature is enabled.

• True enables the use of custom ACK payloads in the ACK packet when responding to receiving
transmissions. As dynamic_payloads and auto_ack attributes are required for this feature to
work, they are automatically enabled as needed.

• False disables the use of custom ACK payloads. Disabling this feature does not disable the
auto_ack and dynamic_payloads attributes (they work just fine without this feature).

5.1. Table of Contents 33

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1047965
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False

nRF24L01 Library Documentation, Release 1.0

RF24.load_ack(buf, pipe_number)
This allows the MCU to specify a payload to be allocated into the TX FIFO buffer for use on a specific
data pipe. This payload will then be appended to the automatic acknowledgment (ACK) packet that is sent
when fresh data is received on the specified pipe. See read_ack() on how to fetch a received custom
ACK payloads.

Parameters

• buf (bytearray) – This will be the data attached to an automatic ACK packet on
the incoming transmission about the specified pipe_number parameter. This must
have a length in range [1,32] bytes, otherwise a ValueError exception is thrown.
Any ACK payloads will remain in the TX FIFO buffer until transmitted successfully or
flush_tx() is called.

• pipe_number (int) – This will be the pipe number to use for deciding which trans-
missions get a response with the specified buf parameter’s data. This number must be in
range [0,5], otherwise a ValueError exception is thrown.

Returns True if payload was successfully loaded onto the TX FIFO buffer. False if it wasn’t
because TX FIFO buffer is full.

Note: this function takes advantage of a special feature on the nRF24L01 and needs to be called for every
time a customized ACK payload is to be used (not for every automatic ACK packet – this just appends
a payload to the ACK packet). The ack, auto_ack, and dynamic_payloads attributes are also
automatically enabled by this function when necessary.

Tip: The ACK payload must be set prior to receiving a transmission. It is also worth noting that the
nRF24L01 can hold up to 3 ACK payloads pending transmission. Using this function does not over-write
existing ACK payloads pending; it only adds to the queue (TX FIFO buffer) if it can. Use flush_tx()
to discard unused ACK payloads when done listening.

RF24.read_ack()
Allows user to read the automatic acknowledgement (ACK) payload (if any) when nRF24L01 is in TX
mode. This function is called from a blocking send() call if the ack attribute is enabled. Alterna-
tively, this function can be called directly in case of calling the non-blocking write() function during
asychronous applications.

Warning: In the case of asychronous applications, this function will do nothing if the sta-
tus flags are cleared after calling write() and before calling this function. See also the ack,
dynamic_payloads, and auto_ack attributes as they must be enabled to use custom ACK pay-
loads.

RF24.data_rate
This int attribute specifies the nRF24L01’s frequency data rate for OTA (over the air) transmissions.

A valid input value is:

• 1 sets the frequency data rate to 1 Mbps

• 2 sets the frequency data rate to 2 Mbps

• 250 sets the frequency data rate to 250 Kbps

Any invalid input throws a ValueError exception. Default is 1 Mbps.

34 Chapter 5. Sphinx documentation

https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError

nRF24L01 Library Documentation, Release 1.0

Warning: 250 Kbps is be buggy on the non-plus models of the nRF24L01 product line. If you use
250 Kbps data rate, and some transmissions report failed by the transmitting nRF24L01, even though
the same packet in question actually reports received by the receiving nRF24L01, then try a higher data
rate. CAUTION: Higher data rates mean less maximum distance between nRF24L01 transceivers (and
vise versa).

RF24.channel
This int attribute specifies the nRF24L01’s frequency (in 2400 + channel MHz).

A valid input value must be in range [0, 125] (that means [2.4, 2.525] GHz). Otherwise a ValueError
exception is thrown. Default is 76.

RF24.crc
This int attribute specifies the nRF24L01’s CRC (cyclic redundancy checking) encoding scheme in terms
of byte length.

A valid input value is in range [0,2]:

• 0 disables CRC

• 1 enables CRC encoding scheme using 1 byte

• 2 enables CRC encoding scheme using 2 bytes

Any invalid input throws a ValueError exception. Default is enabled using 2 bytes.

Note: The nRF24L01 automatically enables CRC if automatic acknowledgment feature is enabled (see
auto_ack attribute).

RF24.power
This bool attribute controls the power state of the nRF24L01. This is exposed for asynchronous applica-
tions and user preference.

• False basically puts the nRF24L01 to sleep (AKA power down mode) with ultra-low current con-
sumption. No transmissions are executed when sleeping, but the nRF24L01 can still be accessed
through SPI. Upon instantiation, this driver class puts the nRF24L01 to sleep until the MCU invokes
RX/TX transmissions. This driver class doesn’t power down the nRF24L01 after RX/TX transmis-
sions are complete (avoiding the required power up/down 130 µs wait time), that preference is left to
the user.

• True powers up the nRF24L01. This is the first step towards entering RX/TX modes (see also
listen attribute). Powering up is automatically handled by the listen attribute as well as the
send() and write() functions.

Note: This attribute needs to be True if you want to put radio on Standby-II (highest current consump-
tion) or Standby-I (moderate current consumption) modes. TX transmissions are only executed during
Standby-II by calling send() or write(). RX transmissions are received during Standby-II by setting
listen attribute to True (see Chapter 6.1.2-7 of the nRF24L01+ Specifications Sheet). After using
send() or setting listen to False, the nRF24L01 is left in Standby-I mode (see also notes on the
write() function).

RF24.arc
“This int attribute specifies the nRF24L01’s number of attempts to re-transmit TX payload when ac-
knowledgment packet is not received. The nRF24L01 does not attempt to re-transmit if auto_ack at-
tribute is disabled.

5.1. Table of Contents 35

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132980
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#int

nRF24L01 Library Documentation, Release 1.0

A valid input value must be in range [0,15]. Otherwise a ValueError exception is thrown. Default is
set to 3.

RF24.ard
This int attribute specifies the nRF24L01’s delay (in µs) between attempts to automatically re-transmit
the TX payload when an expected acknowledgement (ACK) packet is not received. During this time, the
nRF24L01 is listening for the ACK packet. If the auto_ack attribute is disabled, this attribute is not
applied.

A valid input value must be a multiple of 250 in range [250,4000]. Otherwise a ValueError exception
is thrown. Default is 1500 for reliability.

Note: Paraphrased from nRF24L01 specifications sheet:

Please take care when setting this parameter. If the custom ACK payload is more than 15 bytes in 2 Mbps
data rate, the ard must be 500µS or more. If the custom ACK payload is more than 5 bytes in 1 Mbps data
rate, the ard must be 500µS or more. In 250kbps data rate (even when there is no custom ACK payload)
the ard must be 500µS or more.

See data_rate attribute on how to set the data rate of the nRF24L01’s transmissions.

RF24.pa_level
This int attribute specifies the nRF24L01’s power amplifier level (in dBm). Higher levels mean the
transmission will cover a longer distance. Use this attribute to tweak the nRF24L01 current consumption
on projects that don’t span large areas.

A valid input value is:

• -18 sets the nRF24L01’s power amplifier to -18 dBm (lowest)

• -12 sets the nRF24L01’s power amplifier to -12 dBm

• -6 sets the nRF24L01’s power amplifier to -6 dBm

• 0 sets the nRF24L01’s power amplifier to 0 dBm (highest)

Any invalid input throws a ValueError exception. Default is 0 dBm.

RF24.tx_full
An attribute to represent the nRF24L01’s status flag signaling that the TX FIFO buffer is full. (read-only)

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS
byte that’s always returned from any SPI transactions with the nRF24L01. Use the update() function
to manually refresh this data when needed.

Returns

• True for TX FIFO buffer is full

• False for TX FIFO buffer is not full. This doesn’t mean the TX FIFO buffer is empty.

RF24.update()
This function is only used to get an updated status byte over SPI from the nRF24L01 and is exposed to the
MCU for asynchronous applications. Refreshing the status byte is vital to checking status of the interrupts,
RX pipe number related to current RX payload, and if the TX FIFO buffer is full. This function returns
nothing, but internally updates the irq_DR, irq_DS, irq_DF, and tx_full attributes. Internally this
is a helper function to pipe(), send(), and resend() functions

RF24.resend()
Use this function to maunally re-send the previously failed-to-transmit payload in the top level (first out)
of the TX FIFO buffer.

36 Chapter 5. Sphinx documentation

https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False

nRF24L01 Library Documentation, Release 1.0

Note: The nRF24L01 normally removes a payload from the TX FIFO buffer after successful transmission,
but not when this function is called. The payload (successfully transmitted or not) will remain in the TX
FIFO buffer until flush_tx() is called to remove them. Alternatively, using this function also allows
the failed payload to be over-written by using send() or write() to load a new payload.

RF24.write(buf=None, ask_no_ack=False)
This non-blocking function (when used as alternative to send()) is meant for asynchronous applications
and can only handle one payload at a time as it is a helper function to send().

Parameters

• buf (bytearray) – The payload to transmit. This bytearray must have a length greater
than 0 and less than 32 bytes, otherwise a ValueError exception is thrown.

– If the dynamic_payloads attribute is disabled and this bytearray’s length is less
than the payload_length attribute, then this bytearray is padded with zeros until its
length is equal to the payload_length attribute.

– If the dynamic_payloads attribute is disabled and this bytearray’s length is greater
than payload_length attribute, then this bytearray’s length is truncated to equal the
payload_length attribute.

• ask_no_ack (bool) – Pass this parameter as True to tell the nRF24L01 not to wait
for an acknowledgment from the receiving nRF24L01. This parameter directly controls
a NO_ACK flag in the transmission’s Packet Control Field (9 bits of information about
the payload). Therefore, it takes advantage of an nRF24L01 feature specific to individual
payloads, and its value is not saved anywhere. You do not need to specify this for ev-
ery payload if the auto_ack attribute is disabled, however this parameter should work
despite the auto_ack attribute’s setting.

Note: Each transmission is in the form of a packet. This packet contains sections of data
around and including the payload. See Chapter 7.3 in the nRF24L01 Specifications Sheet
for more details.

This function isn’t completely non-blocking as we still need to wait just under 5 ms for the CSN pin to
settle (allowing a clean SPI transaction).

Note: The nRF24L01 doesn’t initiate sending until a mandatory minimum 10 µs pulse on the CE pin is
acheived. That pulse is initiated before this function exits. However, we have left that 10 µs wait time to
be managed by the MCU in cases of asychronous application, or it is managed by using send() instead
of this function. If the CE pin remains HIGH for longer than 10 µs, then the nRF24L01 will continue to
transmit all payloads found in the TX FIFO buffer.

Warning: A note paraphrased from the nRF24L01+ Specifications Sheet:

It is important to NEVER to keep the nRF24L01+ in TX mode for more than 4 ms at a time. If
the [auto_ack and dynamic_payloads] features are enabled, nRF24L01+ is never in TX mode
longer than 4 ms.

Tip: Use this function at your own risk. Because of the underlying “Enhanced ShockBurst Protocol”,
disobeying the 4 ms rule is easily avoided if you enable the dynamic_payloads and auto_ack

5.1. Table of Contents 37

https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132607

nRF24L01 Library Documentation, Release 1.0

attributes. Alternatively, you MUST use interrupt flags or IRQ pin with user defined timer(s) to AVOID
breaking the 4 ms rule. If the nRF24L01+ Specifications Sheet explicitly states this, we have to assume
radio damage or misbehavior as a result of disobeying the 4 ms rule. See also table 18 in the nRF24L01
specification sheet for calculating necessary transmission time (these calculations are used in the send()
function).

RF24.flush_rx()
A helper function to flush the nRF24L01’s internal RX FIFO buffer. (write-only)

Note: The nRF24L01 RX FIFO is 3 level stack that holds payload data. This means that there can be up
to 3 received payloads (each of a maximum length equal to 32 bytes) waiting to be read (and popped from
the stack) by recv() or read_ack(). This function clears all 3 levels.

RF24.flush_tx()
A helper function to flush the nRF24L01’s internal TX FIFO buffer. (write-only)

Note: The nRF24L01 TX FIFO is 3 level stack that holds payload data. This means that there can
be up to 3 payloads (each of a maximum length equal to 32 bytes) waiting to be transmit by send(),
resend() or write(). This function clears all 3 levels. It is worth noting that the payload data is only
popped from the TX FIFO stack upon successful transmission (see also resend() as the handling of
failed transmissions can be altered).

RF24.fifo(tx=False, empty=None)
This provides some precision determining the status of the TX/RX FIFO buffers. (read-only)

Parameters

• tx (bool) –

– True means information returned is about the TX FIFO buffer.

– False means information returned is about the RX FIFO buffer. This parameter de-
faults to False when not specified.

• empty (bool) –

– True tests if the specified FIFO buffer is empty.

– False tests if the specified FIFO buffer is full.

– None (when not specified) returns a 2 bit number representing both empty (bit 1) & full
(bit 0) tests related to the FIFO buffer specified using the tx parameter.

Returns

• A bool answer to the question: “Is the [TX/RX]:[True/False] FIFO buffer
[empty/full]:[True/False]?

• If the empty parameter is not specified: an int in range [0,2] for which:

– 1 means the specified FIFO buffer is full

– 2 means the specified FIFO buffer is empty

– 0 means the specified FIFO buffer is neither full nor empty

RF24.pipe()
This function returns information about the data pipe that received the next available payload in the RX
FIFO buffer.

38 Chapter 5. Sphinx documentation

https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/constants.html#True
https://docs.python.org/3.4/library/constants.html#False
https://docs.python.org/3.4/library/functions.html#int

nRF24L01 Library Documentation, Release 1.0

Returns

• None if there is no payload in RX FIFO.

• The int identifying pipe number [0,5] that received the next available payload in the RX
FIFO buffer.

5.2 Indices and tables

• genindex

• modindex

• search

5.2. Indices and tables 39

https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/functions.html#int

nRF24L01 Library Documentation, Release 1.0

40 Chapter 5. Sphinx documentation

Index

A
ack (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 33
address_length (circuitpython_nrf24l01.rf24.RF24

attribute), 27
any() (circuitpython_nrf24l01.rf24.RF24 method), 28
arc (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 35
ard (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 36
auto_ack (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 32

C
channel (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 35
circuitpython_nrf24l01.rf24.RF24 (class in

circuitpython_nrf24l01.rf24), 30
clear_status_flags() (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 32

close_rx_pipe() (circuit-
python_nrf24l01.rf24.RF24 method), 27

crc (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 35

D
data_rate (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 34
dynamic_payloads (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 31

F
fifo() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

method), 38
flush_rx() (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 38

flush_tx() (circuit-
python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 38

I
interrupt_config() (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 33

irq_DF (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 32

irq_DR (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 32

irq_DS (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 32

L
listen (circuitpython_nrf24l01.rf24.RF24 attribute),

28
load_ack() (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 33

O
open_rx_pipe() (circuitpython_nrf24l01.rf24.RF24

method), 28
open_tx_pipe() (circuitpython_nrf24l01.rf24.RF24

method), 27

P
pa_level (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 36
payload_length (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 31

pipe() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 38

power (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
attribute), 35

41

nRF24L01 Library Documentation, Release 1.0

R
read_ack() (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 34

recv() (circuitpython_nrf24l01.rf24.RF24 method), 28
resend() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

method), 36
RF24 (class in circuitpython_nrf24l01.rf24), 26

S
send() (circuitpython_nrf24l01.rf24.RF24 method), 29

T
tx_full (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

attribute), 36

U
update() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24

method), 36

W
what_happened() (circuit-

python_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 30

write() (circuitpython_nrf24l01.rf24.circuitpython_nrf24l01.rf24.RF24.RF24
method), 37

42 Index

	Features currently supported
	Features currently unsupported
	Dependencies
	Installing from PyPI
	Pinout
	Using The Examples
	About the nRF24L01

	Key Features:
	Applications
	Where do I get 1?
	Contributing

	Sphinx documentation
	Table of Contents
	Simple test
	ACK Payloads Example
	IRQ Pin Example
	Stream Example
	Context Example
	Working with TMRh20’s Arduino library
	RF24 class
	Basic API
	Advanced API

	Indices and tables

	Index

