
nRF24L01 Library Documentation
Release 2.1.0

Brendan Doherty

Nov 26, 2021

CONTENTS

1 nRF24L01 Features 1
1.1 Simple test . 1
1.2 ACK Payloads Example . 3
1.3 Multiceiver Example . 6
1.4 Scanner Example . 9
1.5 IRQ Pin Example . 12

2 Library-Specific Features 15
2.1 Stream Example . 15
2.2 Context Example . 18
2.3 Manual ACK Example . 20
2.4 Network Test . 23

3 OTA compatibility 27
3.1 Fake BLE Example . 27
3.2 TMRh20’s C++ libraries . 30

4 Basic RF24 API 33

5 Advanced RF24 API 39
5.1 Debugging Output . 42
5.2 Status Byte . 44
5.3 FIFO management . 46
5.4 Ambiguous Signal Detection . 47

6 Configurable RF24 API 49
6.1 dynamic_payloads . 51
6.2 payload_length . 52
6.3 auto_ack . 54
6.4 Auto-Retry feature . 55

7 BLE API 57
7.1 BLE Limitations . 57
7.2 fake_ble module helpers . 58
7.3 QueueElement class . 59
7.4 FakeBLE class . 60
7.5 Service related classes . 64

8 Network Topology 67
8.1 Network Levels . 67
8.2 Physical addresses vs Logical addresses . 69

i

9 Network Data Structures 73
9.1 Header . 73
9.2 Frame . 74
9.3 FrameQueue . 75
9.4 FrameQueueFrag . 76
9.5 Logical Address Validation . 76

10 Shared Networking API 77
10.1 Order of Inheritence . 77
10.2 Accessible RF24 API . 78
10.3 External Systems API . 79

11 RF24Network API 81
11.1 RF24NetworkRoutingOnly class . 81
11.2 RF24Network class . 81
11.3 Basic API . 82
11.4 Advanced API . 83
11.5 Configuration API . 85

12 RF24Mesh API 87
12.1 RF24MeshNoMaster class . 87
12.2 RF24Mesh class . 87
12.3 Basic API . 88
12.4 Advanced API . 89

13 Network Constants 93
13.1 Sending Behavior Types . 93
13.2 Reserved Network Message Types . 94
13.3 Generic Network constants . 95
13.4 Message Fragment Types . 95
13.5 RF24Mesh specific constants . 95

14 Troubleshooting info 97
14.1 Common Problems . 97
14.2 About the lite version . 99
14.3 Testing nRF24L01+PA+LNA module . 100

15 Getting Started 103
15.1 Introduction . 103
15.2 Pinout . 105
15.3 Using The Examples . 106
15.4 What to purchase . 107
15.5 Contributing . 108
15.6 Site Index . 109

Index 111

ii

CHAPTER

ONE

NRF24L01 FEATURES

1.1 Simple test

Changed in version 2.0.0:

• uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.

• transmits an incrementing float instead of an int

Ensure your device works with this simple test.

Listing 1: examples/nrf24l01_simple_test.py

4 import time
5 import struct
6 import board
7 from digitalio import DigitalInOut
8

9 # if running this on a ATSAMD21 M0 based board
10 # from circuitpython_nrf24l01.rf24_lite import RF24
11 from circuitpython_nrf24l01.rf24 import RF24
12

13 # invalid default values for scoping
14 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
15

16 try: # on Linux
17 import spidev
18

19 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
20 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
21 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
22

23 except ImportError: # on CircuitPython only
24 # using board.SPI() automatically selects the MCU's
25 # available SPI pins, board.SCK, board.MOSI, board.MISO
26 SPI_BUS = board.SPI() # init spi bus object
27

28 # change these (digital output) pins accordingly
29 CE_PIN = DigitalInOut(board.D4)
30 CSN_PIN = DigitalInOut(board.D5)
31

32

(continues on next page)

1

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

33 # initialize the nRF24L01 on the spi bus object
34 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
35 # On Linux, csn value is a bit coded
36 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
37 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
38 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
39

40 # set the Power Amplifier level to -12 dBm since this test example is
41 # usually run with nRF24L01 transceivers in close proximity
42 nrf.pa_level = -12
43

44 # addresses needs to be in a buffer protocol object (bytearray)
45 address = [b"1Node", b"2Node"]
46

47 # to use different addresses on a pair of radios, we need a variable to
48 # uniquely identify which address this radio will use to transmit
49 # 0 uses address[0] to transmit, 1 uses address[1] to transmit
50 radio_number = bool(
51 int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
52)
53

54 # set TX address of RX node into the TX pipe
55 nrf.open_tx_pipe(address[radio_number]) # always uses pipe 0
56

57 # set RX address of TX node into an RX pipe
58 nrf.open_rx_pipe(1, address[not radio_number]) # using pipe 1
59

60 # using the python keyword global is bad practice. Instead we'll use a 1 item
61 # list to store our float number for the payloads sent
62 payload = [0.0]
63

64 # uncomment the following 3 lines for compatibility with TMRh20 library
65 # nrf.allow_ask_no_ack = False
66 # nrf.dynamic_payloads = False
67 # nrf.payload_length = 4
68

69

70 def master(count=5): # count = 5 will only transmit 5 packets
71 """Transmits an incrementing integer every second"""
72 nrf.listen = False # ensures the nRF24L01 is in TX mode
73

74 while count:
75 # use struct.pack to packetize your data
76 # into a usable payload
77 buffer = struct.pack("<f", payload[0])
78 # "<f" means a single little endian (4 byte) float value.
79 start_timer = time.monotonic_ns() # start timer
80 result = nrf.send(buffer)
81 end_timer = time.monotonic_ns() # end timer
82 if not result:
83 print("send() failed or timed out")
84 else:

(continues on next page)

2 Chapter 1. nRF24L01 Features

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

85 print(
86 "Transmission successful! Time to Transmit:",
87 f"{(end_timer - start_timer) / 1000} us. Sent: {payload[0]}"
88)
89 payload[0] += 0.01
90 time.sleep(1)
91 count -= 1
92

93

94 def slave(timeout=6):
95 """Polls the radio and prints the received value. This method expires
96 after 6 seconds of no received transmission"""
97 nrf.listen = True # put radio into RX mode and power up
98

99 start = time.monotonic()
100 while (time.monotonic() - start) < timeout:
101 if nrf.available():
102 # grab information about the received payload
103 payload_size, pipe_number = (nrf.any(), nrf.pipe)
104 # fetch 1 payload from RX FIFO
105 buffer = nrf.read() # also clears nrf.irq_dr status flag
106 # expecting a little endian float, thus the format string "<f"
107 # buffer[:4] truncates padded 0s if dynamic payloads are disabled
108 payload[0] = struct.unpack("<f", buffer[:4])[0]
109 # print details about the received packet
110 print(f"Received {payload_size} bytes on pipe {pipe_number}: {payload[0]}")
111 start = time.monotonic()
112

113 # recommended behavior is to keep in TX mode while idle
114 nrf.listen = False # put the nRF24L01 is in TX mode
115

116

1.2 ACK Payloads Example

Changed in version 2.0.0:

• uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.

• changed payloads to show use of c-strings’ NULL terminating character.

This is a test to show how to use custom acknowledgment payloads.

See also:

More details are found in the documentation on ack and load_ack().

Listing 2: examples/nrf24l01_ack_payload_test.py

5 import time
6 import board
7 from digitalio import DigitalInOut
8

(continues on next page)

1.2. ACK Payloads Example 3

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

9 # if running this on a ATSAMD21 M0 based board
10 # from circuitpython_nrf24l01.rf24_lite import RF24
11 from circuitpython_nrf24l01.rf24 import RF24
12

13 # invalid default values for scoping
14 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
15

16 try: # on Linux
17 import spidev
18

19 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
20 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
21 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
22

23 except ImportError: # on CircuitPython only
24 # using board.SPI() automatically selects the MCU's
25 # available SPI pins, board.SCK, board.MOSI, board.MISO
26 SPI_BUS = board.SPI() # init spi bus object
27

28 # change these (digital output) pins accordingly
29 CE_PIN = DigitalInOut(board.D4)
30 CSN_PIN = DigitalInOut(board.D5)
31

32

33 # initialize the nRF24L01 on the spi bus object
34 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
35 # On Linux, csn value is a bit coded
36 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
37 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
38 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
39

40 # the custom ACK payload feature is disabled by default
41 # NOTE the the custom ACK payload feature will be enabled
42 # automatically when you call load_ack() passing:
43 # a buffer protocol object (bytearray) of
44 # length ranging [1,32]. And pipe number always needs
45 # to be an int ranging [0, 5]
46

47 # to enable the custom ACK payload feature
48 nrf.ack = True # False disables again
49

50 # set the Power Amplifier level to -12 dBm since this test example is
51 # usually run with nRF24L01 transceivers in close proximity
52 nrf.pa_level = -12
53

54 # addresses needs to be in a buffer protocol object (bytearray)
55 address = [b"1Node", b"2Node"]
56

57 # to use different addresses on a pair of radios, we need a variable to
58 # uniquely identify which address this radio will use to transmit
59 # 0 uses address[0] to transmit, 1 uses address[1] to transmit
60 radio_number = bool(

(continues on next page)

4 Chapter 1. nRF24L01 Features

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

61 int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
62)
63

64 # set TX address of RX node into the TX pipe
65 nrf.open_tx_pipe(address[radio_number]) # always uses pipe 0
66

67 # set RX address of TX node into an RX pipe
68 nrf.open_rx_pipe(1, address[not radio_number]) # using pipe 1
69

70 # using the python keyword global is bad practice. Instead we'll use a 1 item
71 # list to store our integer number for the payloads' counter
72 counter = [0]
73

74

75 def master(count=5): # count = 5 will only transmit 5 packets
76 """Transmits a payload every second and prints the ACK payload"""
77 nrf.listen = False # put radio in TX mode
78

79 while count:
80 # construct a payload to send
81 # add b"\0" as a c-string NULL terminating char
82 buffer = b"Hello \0" + bytes([counter[0]])
83 start_timer = time.monotonic_ns() # start timer
84 result = nrf.send(buffer) # save the response (ACK payload)
85 end_timer = time.monotonic_ns() # stop timer
86 if result:
87 # print the received ACK that was automatically
88 # fetched and saved to "result" via send()
89 # print timer results upon transmission success
90 print(
91 "Transmission successful! Time to transmit:",
92 f"{int((end_timer - start_timer) / 1000)} us.",
93 "Sent: {}{}".format(buffer[:6].decode("utf-8"), counter[0]),
94 end=" ",
95)
96 if isinstance(result, bool):
97 print("Received an empty ACK packet")
98 else:
99 # result[:6] truncates c-string NULL termiating char

100 # received counter is a unsigned byte, thus result[7:8][0]
101 print(
102 "Received: {}{}".format(result[:6].decode("utf-8"), result[7:8][0])
103)
104 counter[0] += 1 # increment payload counter
105 elif not result:
106 print("send() failed or timed out")
107 time.sleep(1) # let the RX node prepare a new ACK payload
108 count -= 1
109

110

111 def slave(timeout=6):
112 """Prints the received value and sends an ACK payload"""

(continues on next page)

1.2. ACK Payloads Example 5

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

113 nrf.listen = True # put radio into RX mode, power it up
114

115 # setup the first transmission's ACK payload
116 # add b"\0" as a c-string NULL terminating char
117 buffer = b"World \0" + bytes([counter[0]])
118 # we must set the ACK payload data and corresponding
119 # pipe number [0, 5]. We'll be acknowledging pipe 1
120 nrf.load_ack(buffer, 1) # load ACK for first response
121

122 start = time.monotonic() # start timer
123 while (time.monotonic() - start) < timeout:
124 if nrf.available():
125 # grab information about the received payload
126 length, pipe_number = (nrf.any(), nrf.pipe)
127 # retreive the received packet's payload
128 received = nrf.read()
129 # increment counter from received payload
130 # received counter is a unsigned byte, thus result[7:8][0]
131 counter[0] = received[7:8][0] + 1
132 # the [:6] truncates the c-string NULL termiating char
133 print(
134 f"Received {length} bytes on pipe {pipe_number}:",
135 "{}{}".format(received[:6].decode("utf-8"), received[7:8][0]),
136 "Sent: {}{}".format(buffer[:6].decode("utf-8"), buffer[7:8][0]),
137)
138 start = time.monotonic() # reset timer
139 buffer = b"World \0" + bytes([counter[0]]) # build new ACK
140 nrf.load_ack(buffer, 1) # load ACK for next response
141

142 # recommended behavior is to keep in TX mode while idle
143 nrf.listen = False # put radio in TX mode
144 nrf.flush_tx() # flush any ACK payloads that remain
145

146

1.3 Multiceiver Example

New in version 1.2.2.

Changed in version 2.0.0: no longer uses ACK payloads for responding to node 1.

This example shows how use a group of 6 nRF24L01 transceivers to transmit to 1 nRF24L01 transceiver. This technique
is called “Multiceiver” in the nRF24L01 Specifications Sheet

Note: This example follows the diagram illistrated in figure 12 of section 7.7 of the nRF24L01 Specifications Sheet
Please note that if auto_ack (on the base station) and arc (on the transmitting nodes) are disabled, then figure 10 of
section 7.7 of the nRF24L01 Specifications Sheet would be a better illustration.

Hint: A paraphrased note from the the nRF24L01 Specifications Sheet:

6 Chapter 1. nRF24L01 Features

https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1104474
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#page=39
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1104474
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1104474

nRF24L01 Library Documentation, Release 2.1.0

Only when a data pipe receives a complete packet can other data pipes begin to receive data. When multiple
[nRF24L01]s are transmitting to [one nRF24L01], the ard can be used to skew the auto retransmission
so that they only block each other once.

This basically means that it might help packets get received if the ard attribute is set to various values among multiple
transmitting nRF24L01 transceivers.

Listing 3: examples/nrf24l01_multiceiver_test.py

5 import time
6 import struct
7 import board
8 from digitalio import DigitalInOut
9

10 # if running this on a ATSAMD21 M0 based board
11 # from circuitpython_nrf24l01.rf24_lite import RF24
12 from circuitpython_nrf24l01.rf24 import RF24
13

14 # invalid default values for scoping
15 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
16

17 try: # on Linux
18 import spidev
19

20 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
21 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
22 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
23

24 except ImportError: # on CircuitPython only
25 # using board.SPI() automatically selects the MCU's
26 # available SPI pins, board.SCK, board.MOSI, board.MISO
27 SPI_BUS = board.SPI() # init spi bus object
28

29 # change these (digital output) pins accordingly
30 CE_PIN = DigitalInOut(board.D4)
31 CSN_PIN = DigitalInOut(board.D5)
32

33

34 # initialize the nRF24L01 on the spi bus object
35 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
36 # On Linux, csn value is a bit coded
37 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
38 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
39 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
40

41 # set the Power Amplifier level to -12 dBm since this test example is
42 # usually run with nRF24L01 transceivers in close proximity
43 nrf.pa_level = -12
44

45 # setup the addresses for all transmitting nRF24L01 nodes
46 addresses = [
47 b"\x78" * 5,
48 b"\xF1\xB6\xB5\xB4\xB3",

(continues on next page)

1.3. Multiceiver Example 7

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

49 b"\xCD\xB6\xB5\xB4\xB3",
50 b"\xA3\xB6\xB5\xB4\xB3",
51 b"\x0F\xB6\xB5\xB4\xB3",
52 b"\x05\xB6\xB5\xB4\xB3",
53]
54

55 # uncomment the following 3 lines for compatibility with TMRh20 library
56 # nrf.allow_ask_no_ack = False
57 # nrf.dynamic_payloads = False
58 # nrf.payload_length = 8
59

60

61 def base(timeout=10):
62 """Use the nRF24L01 as a base station for lisening to all nodes"""
63 # write the addresses to all pipes.
64 for pipe_n, addr in enumerate(addresses):
65 nrf.open_rx_pipe(pipe_n, addr)
66 nrf.listen = True # put base station into RX mode
67 start_timer = time.monotonic() # start timer
68 while time.monotonic() - start_timer < timeout:
69 while not nrf.fifo(False, True): # keep RX FIFO empty for reception
70 # show the pipe number that received the payload
71 # NOTE read() clears the pipe number and payload length data
72 print("Received", nrf.any(), "on pipe", nrf.pipe, end=" ")
73 node_id, payload_id = struct.unpack("<ii", nrf.read())
74 print(f"from node {node_id}. PayloadID: {payload_id}")
75 start_timer = time.monotonic() # reset timer with every payload
76 nrf.listen = False
77

78

79 def node(node_number=0, count=6):
80 """start transmitting to the base station.
81

82 :param int node_number: the node's identifying index (from the
83 the `addresses` list)
84 :param int count: the number of times that the node will transmit
85 to the base station.
86 """
87 nrf.listen = False
88 # set the TX address to the address of the base station.
89 nrf.open_tx_pipe(addresses[node_number])
90 counter = 0
91 # use the node_number to identify where the payload came from
92 while counter < count:
93 counter += 1
94 # payloads will include the node_number and a payload ID character
95 payload = struct.pack("<ii", node_number, counter)
96 # show something to see it isn't frozen
97 start_timer = time.monotonic_ns()
98 report = nrf.send(payload)
99 end_timer = time.monotonic_ns()

100 # show something to see it isn't frozen
(continues on next page)

8 Chapter 1. nRF24L01 Features

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

101 if report:
102 print(
103 f"Transmission of payloadID {counter} as node {node_number} success"
104 f"full! Transmission time: {int((end_timer - start_timer) / 1000)} us"
105)
106 else:
107 print("Transmission failed or timed out")
108 time.sleep(0.5) # slow down the test for readability
109

110

1.4 Scanner Example

New in version 2.0.0.

This example simply scans the entire RF frquency (2.4 GHz to 2.525 GHz) and outputs a vertical graph of how many
signals (per channel) were detected. This example can be used to find a frequency with the least ambient interference
from other radio-emitting sources (i.e. WiFi, Bluetooth, or etc).

Listing 4: examples/nrf24l01_scanner_test.py

6 import time
7 import board
8 from digitalio import DigitalInOut
9

10 # if running this on a ATSAMD21 M0 based board
11 # from circuitpython_nrf24l01.rf24_lite import RF24
12 from circuitpython_nrf24l01.rf24 import RF24, address_repr
13

14 # invalid default values for scoping
15 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
16

17 try: # on Linux
18 import spidev
19

20 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
21 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
22 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
23

24 except ImportError: # on CircuitPython only
25 # using board.SPI() automatically selects the MCU's
26 # available SPI pins, board.SCK, board.MOSI, board.MISO
27 SPI_BUS = board.SPI() # init spi bus object
28

29 # change these (digital output) pins accordingly
30 CE_PIN = DigitalInOut(board.D4)
31 CSN_PIN = DigitalInOut(board.D5)
32

33

34 # initialize the nRF24L01 on the spi bus object
35 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)

(continues on next page)

1.4. Scanner Example 9

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

36 # On Linux, csn value is a bit coded
37 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
38 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
39 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
40

41 # turn off RX features specific to the nRF24L01 module
42 nrf.auto_ack = False
43 nrf.dynamic_payloads = False
44 nrf.crc = 0
45 nrf.arc = 0
46 nrf.allow_ask_no_ack = False
47

48 # use reverse engineering tactics for a better "snapshot"
49 nrf.address_length = 2
50 nrf.open_rx_pipe(1, b"\0\x55")
51 nrf.open_rx_pipe(0, b"\0\xAA")
52

53

54 def scan(timeout=30):
55 """Traverse the spectrum of accessible frequencies and print any detection
56 of ambient signals.
57

58 :param int timeout: The number of seconds in which scanning is performed.
59 """
60 # print the vertical header of channel numbers
61 print("0" * 100 + "1" * 26)
62 for i in range(13):
63 print(str(i % 10) * (10 if i < 12 else 6), sep="", end="")
64 print("") # endl
65 for i in range(126):
66 print(str(i % 10), sep="", end="")
67 print("\n" + "~" * 126)
68

69 signals = [0] * 126 # store the signal count for each channel
70 curr_channel = 0
71 start_timer = time.monotonic() # start the timer
72 while time.monotonic() - start_timer < timeout:
73 nrf.channel = curr_channel
74 if nrf.available():
75 nrf.flush_rx() # flush the RX FIFO because it asserts the RPD flag
76 nrf.listen = 1 # start a RX session
77 time.sleep(0.00013) # wait 130 microseconds
78 signals[curr_channel] += nrf.rpd # if interference is present
79 nrf.listen = 0 # end the RX session
80 curr_channel = curr_channel + 1 if curr_channel < 125 else 0
81

82 # ouptut the signal counts per channel
83 sig_cnt = signals[curr_channel]
84 print(
85 ("%X" % min(15, sig_cnt)) if sig_cnt else "-",
86 sep="",
87 end="" if curr_channel < 125 else "\r",

(continues on next page)

10 Chapter 1. nRF24L01 Features

nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

88)
89 # finish printing results and end with a new line
90 while curr_channel < len(signals) - 1:
91 curr_channel += 1
92 sig_cnt = signals[curr_channel]
93 print(("%X" % min(15, sig_cnt)) if sig_cnt else "-", sep="", end="")
94 print("")
95

96

97 def noise(timeout=1, channel=None):
98 """print a stream of detected noise for duration of time.
99

100 :param int timeout: The number of seconds to scan for ambiant noise.
101 :param int channel: The specific channel to focus on. If not provided, then the
102 radio's current setting is used.
103 """
104 if channel is not None:
105 nrf.channel = channel
106 nrf.listen = True
107 timeout += time.monotonic()
108 while time.monotonic() < timeout:
109 signal = nrf.read()
110 if signal:
111 print(address_repr(signal, False, " "))
112 nrf.listen = False
113 while not nrf.fifo(False, True):
114 # dump the left overs in the RX FIFO
115 print(address_repr(nrf.read(), False, " "))
116

117

1.4.1 Reading the scanner output

Hint: Make sure the terminal window used to run the scanner example is expanded to fit 125 characters. Otherwise
the output will look weird.

The output of the scanner example is supposed to be read vertically (as columns). So, the following

000
111
789
~~~
13-

should be interpreted as

• 1 signal detected on channel 017

• 3 signals detected on channel 018

• no signal (-) detected on channel 019

1.4. Scanner Example 11



nRF24L01 Library Documentation, Release 2.1.0

The ~ is just a divider between the vertical header and the signal counts.

1.5 IRQ Pin Example

Changed in version 1.2.0: uses ACK payloads to trigger all 3 IRQ events.

Changed in version 2.0.0: uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.

This is a test to show how to use nRF24L01’s interrupt pin using the non-blocking write(). Also the ack attribute
is enabled to trigger the irq_dr event when the master node receives ACK payloads. Simply put, this example is the
most advanced example script (in this library), and it runs very quickly.

Listing 5: examples/nrf24l01_interrupt_test.py

7 import time
8 import board
9 import digitalio

10

11 # if running this on a ATSAMD21 M0 based board
12 # from circuitpython_nrf24l01.rf24_lite import RF24
13 from circuitpython_nrf24l01.rf24 import RF24
14

15 # select your digital input pin that's connected to the IRQ pin on the nRF4L01
16 irq_pin = digitalio.DigitalInOut(board.D12)
17 irq_pin.switch_to_input() # make sure its an input object
18 # change these (digital output) pins accordingly
19 CE_PIN = digitalio.DigitalInOut(board.D4)
20 CSN_PIN = digitalio.DigitalInOut(board.D5)
21

22 # using board.SPI() automatically selects the MCU's
23 # available SPI pins, board.SCK, board.MOSI, board.MISO
24 SPI_BUS = board.SPI() # init spi bus object
25

26 # we'll be using the dynamic payload size feature (enabled by default)
27 # initialize the nRF24L01 on the spi bus object
28 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
29

30 # this example uses the ACK payload to trigger the IRQ pin active for
31 # the "on data received" event
32 nrf.ack = True # enable ACK payloads
33

34 # set the Power Amplifier level to -12 dBm since this test example is
35 # usually run with nRF24L01 transceivers in close proximity
36 nrf.pa_level = -12
37

38 # address needs to be in a buffer protocol object (bytearray is preferred)
39 address = [b"1Node", b"2Node"]
40

41 # to use different addresses on a pair of radios, we need a variable to
42 # uniquely identify which address this radio will use to transmit
43 # 0 uses address[0] to transmit, 1 uses address[1] to transmit
44 radio_number = bool(
45 int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)

(continues on next page)

12 Chapter 1. nRF24L01 Features



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

46 )
47

48 # set TX address of RX node into the TX pipe
49 nrf.open_tx_pipe(address[radio_number]) # always uses pipe 0
50

51 # set RX address of TX node into an RX pipe
52 nrf.open_rx_pipe(1, address[not radio_number]) # using pipe 1
53

54

55 def _ping_and_prompt():
56 """transmit 1 payload, wait till irq_pin goes active, print IRQ status
57 flags."""
58 nrf.ce_pin = 1 # tell the nRF24L01 to prepare sending a single packet
59 time.sleep(0.00001) # mandatory 10 microsecond pulse starts transmission
60 nrf.ce_pin = 0 # end 10 us pulse; use only 1 buffer from TX FIFO
61 while irq_pin.value: # IRQ pin is active when LOW
62 pass
63 print("IRQ pin went active LOW.")
64 nrf.update() # update irq_d? status flags
65 print(f"\tirq_ds: {nrf.irq_ds}, irq_dr: {nrf.irq_dr}, irq_df: {nrf.irq_df}")
66

67

68 def master():
69 """Transmits 3 times: successfully receive ACK payload first, successfully
70 transmit on second, and intentionally fail transmit on the third"""
71 nrf.listen = False # ensures the nRF24L01 is in TX mode
72 # NOTE nrf.write() internally calls nrf.clear_status_flags() first
73

74 # load 2 buffers into the TX FIFO; write_only=True leaves CE pin LOW
75 nrf.write(b"Ping ", write_only=True)
76 nrf.write(b"Pong ", write_only=True)
77

78 # on data ready test
79 print("\nConfiguring IRQ pin to only ignore 'on data sent' event")
80 nrf.interrupt_config(data_sent=False)
81 print(" Pinging slave node for an ACK payload...", end=" ")
82 _ping_and_prompt() # CE pin is managed by this function
83 print("\t\"on data ready\" event test {}successful".format("un" * nrf.irq_dr))
84

85 # on data sent test
86 print("\nConfiguring IRQ pin to only ignore 'on data ready' event")
87 nrf.interrupt_config(data_recv=False)
88 print(" Pinging slave node again... ", end=" ")
89 _ping_and_prompt() # CE pin is managed by this function
90 print("\t\"on data sent\" event test {}successful".format("un" * nrf.irq_ds))
91

92 # trigger slave node to exit by filling the slave node's RX FIFO
93 print("\nSending one extra payload to fill RX FIFO on slave node.")
94 if nrf.send(b"Radio", send_only=True):
95 # when send_only parameter is True, send() ignores RX FIFO usage
96 if nrf.fifo(False, False): # is RX FIFO full?
97 print("Slave node should not be listening anymore.")

(continues on next page)

1.5. IRQ Pin Example 13



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

98 else:
99 print("transmission succeeded, " "but slave node might still be listening")

100 else:
101 print("Slave node was unresponsive.")
102

103 # on data fail test
104 print("\nConfiguring IRQ pin to go active for all events.")
105 nrf.interrupt_config()
106 print(" Sending a ping to inactive slave node...", end=" ")
107 nrf.flush_tx() # just in case any previous tests failed
108 nrf.write(b"Dummy", write_only=True) # CE pin is left LOW
109 _ping_and_prompt() # CE pin is managed by this function
110 print("\t\"on data failed\" event test {}successful".format("un" * nrf.irq_df))
111 nrf.flush_tx() # flush artifact payload in TX FIFO from last test
112 # all 3 ACK payloads received were 4 bytes each, and RX FIFO is full
113 # so, fetching 12 bytes from the RX FIFO also flushes RX FIFO
114 print("\nComplete RX FIFO:", nrf.read(12))
115

116

117 def slave(timeout=6): # will listen for 6 seconds before timing out
118 """Only listen for 3 payload from the master node"""
119 # setup radio to recieve pings, fill TX FIFO with ACK payloads
120 nrf.load_ack(b"Yak ", 1)
121 nrf.load_ack(b"Back", 1)
122 nrf.load_ack(b" ACK", 1)
123 nrf.listen = True # start listening & clear irq_dr flag
124 start_timer = time.monotonic() # start timer now
125 while not nrf.fifo(0, 0) and time.monotonic() - start_timer < timeout:
126 # if RX FIFO is not full and timeout is not reached, then keep going
127 pass
128 nrf.listen = False # put nRF24L01 in Standby-I mode when idling
129 if not nrf.fifo(False, True): # if RX FIFO is not empty
130 # all 3 payloads received were 5 bytes each, and RX FIFO is full
131 # so, fetching 15 bytes from the RX FIFO also flushes RX FIFO
132 print("Complete RX FIFO:", nrf.read(15))
133 nrf.flush_tx() # discard any pending ACK payloads
134

135

14 Chapter 1. nRF24L01 Features



CHAPTER

TWO

LIBRARY-SPECIFIC FEATURES

2.1 Stream Example

Changed in version 1.2.3: added master_fifo() to demonstrate using full TX FIFO to stream data.

Changed in version 2.0.0: uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.

This is a test to show how to stream data. The master() uses the send() function to transmit multiple payloads
with 1 function call. However master() only uses 1 level of the nRF24L01’s TX FIFO. An alternate function, called
master_fifo() uses all 3 levels of the nRF24L01’s TX FIFO to stream data, but it uses the write() function to do
so.

Listing 1: examples/nrf24l01_stream_test.py

4 import time
5 import board
6 from digitalio import DigitalInOut
7

8 # if running this on a ATSAMD21 M0 based board
9 # from circuitpython_nrf24l01.rf24_lite import RF24

10 from circuitpython_nrf24l01.rf24 import RF24
11

12 # invalid default values for scoping
13 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
14

15 try: # on Linux
16 import spidev
17

18 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
19 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
20 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
21

22 except ImportError: # on CircuitPython only
23 # using board.SPI() automatically selects the MCU's
24 # available SPI pins, board.SCK, board.MOSI, board.MISO
25 SPI_BUS = board.SPI() # init spi bus object
26

27 # change these (digital output) pins accordingly
28 CE_PIN = DigitalInOut(board.D4)
29 CSN_PIN = DigitalInOut(board.D5)
30

31

(continues on next page)

15



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

32 # initialize the nRF24L01 on the spi bus object
33 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
34 # On Linux, csn value is a bit coded
35 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
36 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
37 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
38

39 # set the Power Amplifier level to -12 dBm since this test example is
40 # usually run with nRF24L01 transceivers in close proximity
41 nrf.pa_level = -12
42

43 # addresses needs to be in a buffer protocol object (bytearray)
44 address = [b"1Node", b"2Node"]
45

46 # to use different addresses on a pair of radios, we need a variable to
47 # uniquely identify which address this radio will use to transmit
48 # 0 uses address[0] to transmit, 1 uses address[1] to transmit
49 radio_number = bool(
50 int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
51 )
52

53 # set TX address of RX node into the TX pipe
54 nrf.open_tx_pipe(address[radio_number]) # always uses pipe 0
55

56 # set RX address of TX node into an RX pipe
57 nrf.open_rx_pipe(1, address[not radio_number]) # using pipe 1
58

59 # uncomment the following 2 lines for compatibility with TMRh20 library
60 # nrf.allow_ask_no_ack = False
61 nrf.dynamic_payloads = False
62

63

64 def make_buffers(size=32):
65 """return a list of payloads"""
66 buffers = []
67 # we'll use `size` for the number of payloads in the list and the
68 # payloads' length
69 for i in range(size):
70 # prefix payload with a sequential letter to indicate which
71 # payloads were lost (if any)
72 buff = bytes([i + (65 if 0 <= i < 26 else 71)])
73 for j in range(size - 1):
74 char = j >= (size - 1) / 2 + abs((size - 1) / 2 - i)
75 char |= j < (size - 1) / 2 - abs((size - 1) / 2 - i)
76 buff += bytes([char + 48])
77 buffers.append(buff)
78 del buff
79 return buffers
80

81

82 def master(count=1, size=32): # count = 5 will transmit the list 5 times
83 """Transmits multiple payloads using `RF24.send()` and `RF24.resend()`."""

(continues on next page)

16 Chapter 2. Library-Specific Features



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

84 buffers = make_buffers(size) # make a list of payloads
85 nrf.listen = False # ensures the nRF24L01 is in TX mode
86 successful = 0 # keep track of success rate
87 for _ in range(count):
88 start_timer = time.monotonic_ns() # start timer
89 # NOTE force_retry=2 internally invokes `RF24.resend()` 2 times at
90 # most for payloads that fail to transmit.
91 result = nrf.send(buffers, force_retry=2) # result is a list
92 end_timer = time.monotonic_ns() # end timer
93 print("Transmission took", (end_timer - start_timer) / 1000, "us")
94 for r in result: # tally the resulting success rate
95 successful += 1 if r else 0
96 print(
97 f"successfully sent {successful / (size * count) * 100}%",
98 f"({successful}/{size * count})"
99 )

100

101

102 def master_fifo(count=1, size=32):
103 """Similar to the `master()` above except this function uses the full
104 TX FIFO and `RF24.write()` instead of `RF24.send()`"""
105 buf = make_buffers(size) # make a list of payloads
106 nrf.listen = False # ensures the nRF24L01 is in TX mode
107 for cnt in range(count): # transmit the same payloads this many times
108 nrf.flush_tx() # clear the TX FIFO so we can use all 3 levels
109 # NOTE the write_only parameter does not initiate sending
110 buf_iter = 0 # iterator of payloads for the while loop
111 failures = 0 # keep track of manual retries
112 start_timer = time.monotonic_ns() # start timer
113 while buf_iter < size: # cycle through all the payloads
114 nrf.ce_pin = False
115 while buf_iter < size and nrf.write(buf[buf_iter], write_only=1):
116 # NOTE write() returns False if TX FIFO is already full
117 buf_iter += 1 # increment iterator of payloads
118 nrf.ce_pin = True
119 while not nrf.fifo(True, True): # updates irq_df flag
120 if nrf.irq_df:
121 # reception failed; we need to reset the irq_rf flag
122 nrf.ce_pin = False # fall back to Standby-I mode
123 failures += 1 # increment manual retries
124 nrf.clear_status_flags() # clear the irq_df flag
125 if failures > 99 and buf_iter < 7 and cnt < 2:
126 # we need to prevent an infinite loop
127 print(
128 "Make sure slave() node is listening."
129 " Quiting master_fifo()"
130 )
131 buf_iter = size + 1 # be sure to exit the while loop
132 nrf.flush_tx() # discard all payloads in TX FIFO
133 else:
134 nrf.ce_pin = True # start re-transmitting
135 nrf.ce_pin = False

(continues on next page)

2.1. Stream Example 17



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

136 end_timer = time.monotonic_ns() # end timer
137 print(
138 f"Transmission took {(end_timer - start_timer) / 1000} us",
139 f"with {failures} failures detected."
140 )
141

142

143 def slave(timeout=5):
144 """Stops listening after a `timeout` with no response"""
145 nrf.listen = True # put radio into RX mode and power up
146 count = 0 # keep track of the number of received payloads
147 start_timer = time.monotonic() # start timer
148 while time.monotonic() < start_timer + timeout:
149 if nrf.available():
150 count += 1
151 # retreive the received packet's payload
152 buffer = nrf.read() # clears flags & empties RX FIFO
153 print(f"Received: {buffer} - {count}")
154 start_timer = time.monotonic() # reset timer on every RX payload
155

156 # recommended behavior is to keep in TX mode while idle
157 nrf.listen = False # put the nRF24L01 is in TX mode
158

159

2.2 Context Example

Changed in version 1.2.0: demonstrates switching between FakeBLE object & RF24 object with the same nRF24L01

This is a test to show how to use The with statement blocks to manage multiple different nRF24L01 configurations
on 1 transceiver.

Listing 2: examples/nrf24l01_context_test.py

10 from circuitpython_nrf24l01.rf24 import RF24
11 from circuitpython_nrf24l01.fake_ble import FakeBLE
12

13 # invalid default values for scoping
14 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
15

16 try: # on Linux
17 import spidev
18

19 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
20 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
21 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
22

23 except ImportError: # on CircuitPython only
24 # using board.SPI() automatically selects the MCU's
25 # available SPI pins, board.SCK, board.MOSI, board.MISO
26 SPI_BUS = board.SPI() # init spi bus object

(continues on next page)

18 Chapter 2. Library-Specific Features

https://docs.python.org/3/reference/compound_stmts.html#with


nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

27

28 # change these (digital output) pins accordingly
29 CE_PIN = DigitalInOut(board.D4)
30 CSN_PIN = DigitalInOut(board.D5)
31

32

33 # initialize the nRF24L01 objects on the spi bus object
34 # the first object will have all the features enabled
35 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
36 # On Linux, csn value is a bit coded
37 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
38 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
39 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
40

41 # enable the option to use custom ACK payloads
42 nrf.ack = True
43 # set the static payload length to 8 bytes
44 nrf.payload_length = 8
45 # RF power amplifier is set to -18 dbm
46 nrf.pa_level = -18
47

48 # the second object has most features disabled/altered
49 ble = FakeBLE(SPI_BUS, CSN_PIN, CE_PIN)
50 # the IRQ pin is configured to only go active on "data fail"
51 # NOTE BLE operations prevent the IRQ pin going active on "data fail" events
52 ble.interrupt_config(data_recv=False, data_sent=False)
53 # using a channel 2
54 ble.channel = 2
55 # RF power amplifier is set to -12 dbm
56 ble.pa_level = -12
57

58 print("\nsettings configured by the nrf object")
59 with nrf:
60 # only the first character gets written because it is on a pipe_number > 1
61 nrf.open_rx_pipe(5, b"1Node") # NOTE we do this inside the "with" block
62

63 # display current settings of the nrf object
64 nrf.print_details(True) # True dumps pipe info
65

66 print("\nsettings configured by the ble object")
67 with ble as nerf: # the "as nerf" part is optional
68 nerf.print_details(1)
69

70 # if you examine the outputs from print_details() you'll see:
71 # pipe 5 is opened using the nrf object, but closed using the ble object.
72 # pipe 0 is closed using the nrf object, but opened using the ble object.
73 # also notice the different addresses bound to the RX pipes
74 # this is because the "with" statements load the existing settings
75 # for the RF24 object specified after the word "with".
76

77 # NOTE it is not advised to manipulate seperate RF24 objects outside of the
78 # "with" block; you will encounter bugs about configurations when doing so.

(continues on next page)

2.2. Context Example 19



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

79 # Be sure to use 1 "with" block per RF24 object when instantiating multiple
80 # RF24 objects in your program.
81 # NOTE exiting a "with" block will always power down the nRF24L01
82 # NOTE upon instantiation, this library closes all RX pipes &
83 # extracts the TX/RX addresses from the nRF24L01 registers

2.3 Manual ACK Example

New in version 2.0.0: Previously, this example was strictly made for TMRh20’s RF24 library example titled “Get-
tingStarted_HandlingData.ino”. With the latest addition of new examples to the TMRh20 RF24 library, this example
was renamed from “nrf24l01_2arduino_handling_data.py” and adapted for both this library and TMRh20’s RF24 li-
brary.

This is a test to show how to use the library for acknowledgement (ACK) responses without using the automatic ACK
packets (like the ACK Payloads Example does). Beware, that this technique is not faster and can be more prone to com-
munication failure. However, This technique has the advantage of using more updated information in the responding
payload as information in ACK payloads are always outdated by 1 transmission.

Listing 3: examples/nrf24l01_manual_ack_test.py

5 import time
6 import board
7 from digitalio import DigitalInOut
8

9 # if running this on a ATSAMD21 M0 based board
10 # from circuitpython_nrf24l01.rf24_lite import RF24
11 from circuitpython_nrf24l01.rf24 import RF24
12

13 # invalid default values for scoping
14 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
15

16 try: # on Linux
17 import spidev
18

19 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
20 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
21 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
22

23 except ImportError: # on CircuitPython only
24 # using board.SPI() automatically selects the MCU's
25 # available SPI pins, board.SCK, board.MOSI, board.MISO
26 SPI_BUS = board.SPI() # init spi bus object
27

28 # change these (digital output) pins accordingly
29 CE_PIN = DigitalInOut(board.D4)
30 CSN_PIN = DigitalInOut(board.D5)
31

32 # initialize the nRF24L01 on the spi bus object
33 nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
34 # On Linux, csn value is a bit coded
35 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default

(continues on next page)

20 Chapter 2. Library-Specific Features



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

36 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
37 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
38

39 # set the Power Amplifier level to -12 dBm since this test example is
40 # usually run with nRF24L01 transceivers in close proximity
41 nrf.pa_level = -12
42

43 # addresses needs to be in a buffer protocol object (bytearray)
44 address = [b"1Node", b"2Node"]
45

46 # to use different addresses on a pair of radios, we need a variable to
47 # uniquely identify which address this radio will use to transmit
48 # 0 uses address[0] to transmit, 1 uses address[1] to transmit
49 radio_number = bool(
50 int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
51 )
52

53 # set TX address of RX node into the TX pipe
54 nrf.open_tx_pipe(address[radio_number]) # always uses pipe 0
55

56 # set RX address of TX node into an RX pipe
57 nrf.open_rx_pipe(1, address[not radio_number]) # using pipe 1
58 # nrf.open_rx_pipe(2, address[radio_number]) # for getting responses on pipe 2
59

60 # using the python keyword global is bad practice. Instead we'll use a 1 item
61 # list to store our integer number for the payloads' counter
62 counter = [0]
63

64 # uncomment the following 3 lines for compatibility with TMRh20 library
65 # nrf.allow_ask_no_ack = False
66 # nrf.dynamic_payloads = False
67 # nrf.payload_length = 8
68

69

70 def master(count=5): # count = 5 will only transmit 5 packets
71 """Transmits an arbitrary unsigned long value every second"""
72 nrf.listen = False # ensures the nRF24L01 is in TX mode
73 while count:
74 # construct a payload to send
75 # add b"\0" as a c-string NULL terminating char
76 buffer = b"Hello \0" + bytes([counter[0]])
77 start_timer = time.monotonic_ns() # start timer
78 result = nrf.send(buffer) # save the response (ACK payload)
79 if not result:
80 print("send() failed or timed out")
81 else: # sent successful; listen for a response
82 nrf.listen = True # get radio ready to receive a response
83 timeout = time.monotonic_ns() + 200000000 # set sentinal for timeout
84 while not nrf.available() and time.monotonic_ns() < timeout:
85 # this loop hangs for 200 ms or until response is received
86 pass
87 nrf.listen = False # put the radio back in TX mode

(continues on next page)

2.3. Manual ACK Example 21



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

88 end_timer = time.monotonic_ns() # stop timer
89 print(
90 "Transmission successful! Time to transmit:",
91 f"{int((end_timer - start_timer) / 1000)} us. Sent:",
92 "{}{}".format(buffer[:6].decode("utf-8"), counter[0]),
93 end=" ",
94 )
95 if nrf.pipe is None: # is there a payload?
96 # nrf.pipe is also updated using `nrf.listen = False`
97 print("Received no response.")
98 else:
99 length = nrf.any() # reset with read()

100 pipe_number = nrf.pipe # reset with read()
101 received = nrf.read() # grab the response
102 # save new counter from response
103 counter[0] = received[7:8][0]
104 print(
105 f"Receieved {length} bytes with pipe {pipe_number}:",
106 "{}{}".format(bytes(received[:6]).decode("utf-8"), counter[0]),
107 )
108 count -= 1
109 # make example readable in REPL by slowing down transmissions
110 time.sleep(1)
111

112

113 def slave(timeout=6):
114 """Polls the radio and prints the received value. This method expires
115 after 6 seconds of no received transmission"""
116 nrf.listen = True # put radio into RX mode and power up
117 start_timer = time.monotonic() # used as a timeout
118 while (time.monotonic() - start_timer) < timeout:
119 if nrf.available():
120 length = nrf.any() # grab payload length info
121 pipe = nrf.pipe # grab pipe number info
122 received = nrf.read(length) # clears info from any() and nrf.pipe
123 # increment counter before sending it back in responding payload
124 counter[0] = received[7:8][0] + 1
125 nrf.listen = False # put the radio in TX mode
126 result = False
127 ack_timeout = time.monotonic_ns() + 200000000
128 while not result and time.monotonic_ns() < ack_timeout:
129 # try to send reply for 200 milliseconds (at most)
130 result = nrf.send(b"World \0" + bytes([counter[0]]))
131 nrf.listen = True # put the radio back in RX mode
132 print(
133 f"Received {length} on pipe {pipe}:",
134 "{}{}".format(bytes(received[:6]).decode("utf-8"), received[7:8][0]),
135 end=" Sent: ",
136 )
137 if not result:
138 print("Response failed or timed out")
139 else:

(continues on next page)

22 Chapter 2. Library-Specific Features



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

140 print("World", counter[0])
141 start_timer = time.monotonic() # reset timeout
142

143 # recommended behavior is to keep in TX mode when in idle
144 nrf.listen = False # put the nRF24L01 in TX mode + Standby-I power state
145

146

2.4 Network Test

New in version 2.1.0.

The following network example is designed to be compatible with most of TMRh20’s C++ examples for the RF24Mesh
and RF24Network libraries. However, due to some slight differences this example prompts for user input which can
cover a broader spectrum of usage scenarios.

Listing 4: examples/nrf24l01_network_test.py

4 import time
5 import struct
6 import board
7 from digitalio import DigitalInOut
8 from circuitpython_nrf24l01.network.constants import MAX_FRAG_SIZE, NETWORK_DEFAULT_ADDR
9

10 IS_MESH = (
11 input(
12 " nrf24l01_network_test example\n"
13 "Would you like to run as a mesh network node (y/n)? Defaults to 'Y' "
14 ) or "Y"
15 ).upper().startswith("Y")
16

17 # to use different addresses on a set of radios, we need a variable to
18 # uniquely identify which address this radio will use
19 THIS_NODE = 0
20 print(
21 "Remember, the master node always uses `0` as the node_address and node_id."
22 "\nWhich node is this? Enter",
23 end=" ",
24 )
25 if IS_MESH:
26 # node_id must be less than 255
27 THIS_NODE = int(input("a unique int. Defaults to '0' ") or "0") & 0xFF
28 else:
29 # logical node_address is in octal
30 THIS_NODE = int(input("an octal int. Defaults to '0' ") or "0", 8)
31

32 if IS_MESH:
33 if THIS_NODE: # if this is not a mesh network master node
34 from circuitpython_nrf24l01.rf24_mesh import RF24MeshNoMaster as Network
35 else:
36 from circuitpython_nrf24l01.rf24_mesh import RF24Mesh as Network

(continues on next page)

2.4. Network Test 23



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

37 print("Using RF24Mesh{} class".format("" if not THIS_NODE else "NoMaster"))
38 else:
39 from circuitpython_nrf24l01.rf24_network import RF24Network as Network
40

41 # we need to construct frame headers for RF24Network.send()
42 from circuitpython_nrf24l01.network.structs import RF24NetworkHeader
43

44 # we need to construct entire frames for RF24Network.write() (not for this example)
45 # from circuitpython_nrf24l01.network.structs import RF24NetworkFrame
46 print("Using RF24Network class")
47

48 # invalid default values for scoping
49 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
50

51 try: # on Linux
52 import spidev
53

54 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
55 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
56 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
57

58 except ImportError: # on CircuitPython only
59 # using board.SPI() automatically selects the MCU's
60 # available SPI pins, board.SCK, board.MOSI, board.MISO
61 SPI_BUS = board.SPI() # init spi bus object
62

63 # change these (digital output) pins accordingly
64 CE_PIN = DigitalInOut(board.D4)
65 CSN_PIN = DigitalInOut(board.D5)
66

67

68 # initialize this node as the network
69 nrf = Network(SPI_BUS, CSN_PIN, CE_PIN, THIS_NODE)
70

71 # TMRh20 examples use a channel 97 for RF24Mesh library
72 # TMRh20 examples use a channel 90 for RF24Network library
73 nrf.channel = 90 + IS_MESH * 7
74

75 # set the Power Amplifier level to -12 dBm since this test example is
76 # usually run with nRF24L01 transceivers in close proximity
77 nrf.pa_level = -12
78

79 # using the python keyword global is bad practice. Instead we'll use a 1 item
80 # list to store our number of the payloads sent
81 packets_sent = [0]
82

83 if THIS_NODE: # if this node is not the network master node
84 if IS_MESH: # mesh nodes need to bond with the master node
85 print("Connecting to mesh network...", end=" ")
86

87 # get this node's assigned address and connect to network
88 if nrf.renew_address() is None:

(continues on next page)

24 Chapter 2. Library-Specific Features



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

89 print("failed. Please try again manually with `nrf.renew_address()`")
90 else:
91 print("assigned address:", oct(nrf.node_address))
92 else:
93 print("Acting as network master node.")
94

95

96 def emit(node=not THIS_NODE, frag=False, count=5, interval=1):
97 """Transmits 1 (or 2) integers or a large buffer
98

99 :param int node: The target node for network transmissions.
100 If using RF24Mesh, this is a unique node_id.
101 If using RF24Network, this is the node's logical address.
102 :param bool frag: Only use fragmented messages?
103 :param int count: The max number of messages to transmit.
104 :param int interval: time (in seconds) between transmitting messages.
105 """
106 failures = 0
107 start_timer = time.monotonic()
108 while failures < 6 and count:
109 nrf.update() # keep the network layer current
110 now = time.monotonic()
111 if now >= start_timer + interval: # its time to emmit
112 start_timer = now
113 count -= 1
114 packets_sent[0] += 1
115 #TMRh20's RF24Mesh examples use 1 long int containing a timestamp (in ms)
116 message = struct.pack("<L", int(now * 1000))
117 if frag:
118 message = bytes(
119 range((packets_sent[0] + MAX_FRAG_SIZE) % nrf.max_message_length)
120 )
121 elif not IS_MESH: # if using RF24Network
122 # TMRh20's RF24Network examples use 2 long ints, so add another
123 message += struct.pack("<L", packets_sent[0])
124 result = False
125 start = time.monotonic_ns()
126 # pylint: disable=no-value-for-parameter
127 if IS_MESH: # send() is a little different for RF24Mesh vs RF24Network
128 result = nrf.send(node, "M", message)
129 else:
130 result = nrf.send(RF24NetworkHeader(node, "T"), message)
131 # pylint: enable=no-value-for-parameter
132 end = time.monotonic_ns()
133 failures += not result
134 print(
135 f"Sending {packets_sent[0]} (len {len(message)})...",
136 "ok." if result else "failed.",
137 f"Transmission took {int((end - start) / 1000000)} ms",
138 )
139

140

(continues on next page)

2.4. Network Test 25



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

141 def idle(timeout=30):
142 """Listen for any payloads and print the transaction
143

144 :param int timeout: The number of seconds to wait (with no transmission)
145 until exiting function.
146 """
147 print("idling for", timeout, "seconds")
148 start_timer = time.monotonic()
149 while (time.monotonic() - start_timer) < timeout:
150 nrf.update() # keep the network layer current
151 while nrf.available():
152 start_timer = time.monotonic() # reset timer
153 payload = nrf.read()
154 payload_len = len(payload.message)
155 print("Received payload", end=" ")
156 # TMRh20 examples only use 1 or 2 long ints as small messages
157 if payload_len < MAX_FRAG_SIZE and payload_len % 4 == 0:
158 # if not a large fragmented message and multiple of 4 bytes
159 fmt = "<" + "L" * int(payload_len / 4)
160 print(struct.unpack(fmt, bytes(payload.message)), end=" ")
161 print(payload.header.to_string(), "length", payload_len)
162

163

26 Chapter 2. Library-Specific Features



CHAPTER

THREE

OTA COMPATIBILITY

3.1 Fake BLE Example

New in version 1.2.0.

Changed in version 2.1.0: A new slave() function was added to demonstrate receiving BLE data.

This is a test to show how to use the nRF24L01 as a BLE advertising beacon using the FakeBLE class.

Listing 1: examples/nrf24l01_fake_ble_test.py

7 import time
8 import board
9 from digitalio import DigitalInOut

10 from circuitpython_nrf24l01.fake_ble import (
11 chunk,
12 FakeBLE,
13 UrlServiceData,
14 BatteryServiceData,
15 TemperatureServiceData,
16 )
17 from circuitpython_nrf24l01.rf24 import address_repr
18

19 # invalid default values for scoping
20 SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)
21

22 try: # on Linux
23 import spidev
24

25 SPI_BUS = spidev.SpiDev() # for a faster interface on linux
26 CSN_PIN = 0 # use CE0 on default bus (even faster than using any pin)
27 CE_PIN = DigitalInOut(board.D22) # using pin gpio22 (BCM numbering)
28

29 except ImportError: # on CircuitPython only
30 # using board.SPI() automatically selects the MCU's
31 # available SPI pins, board.SCK, board.MOSI, board.MISO
32 SPI_BUS = board.SPI() # init spi bus object
33

34 # change these (digital output) pins accordingly
35 CE_PIN = DigitalInOut(board.D4)
36 CSN_PIN = DigitalInOut(board.D5)
37

(continues on next page)

27



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

38

39 # initialize the nRF24L01 on the spi bus object as a BLE compliant radio
40 nrf = FakeBLE(SPI_BUS, CSN_PIN, CE_PIN)
41 # On Linux, csn value is a bit coded
42 # 0 = bus 0, CE0 # SPI bus 0 is enabled by default
43 # 10 = bus 1, CE0 # enable SPI bus 2 prior to running this
44 # 21 = bus 2, CE1 # enable SPI bus 1 prior to running this
45

46 # the name parameter is going to be its broadcasted BLE name
47 # this can be changed at any time using the `name` attribute
48 # nrf.name = b"foobar"
49

50 # you can optionally set the arbitrary MAC address to be used as the
51 # BLE device's MAC address. Otherwise this is randomly generated upon
52 # instantiation of the FakeBLE object.
53 # nrf.mac = b"\x19\x12\x14\x26\x09\xE0"
54

55 # set the Power Amplifier level to -12 dBm since this test example is
56 # usually run with nRF24L01 transceiver in close proximity to the
57 # BLE scanning application
58 nrf.pa_level = -12
59

60

61 def _prompt(remaining):
62 if remaining % 5 == 0 or remaining < 5:
63 if remaining - 1:
64 print(remaining, "advertisments left to go!")
65 else:
66 print(remaining, "advertisment left to go!")
67

68

69 # create an object for manipulating the battery level data
70 battery_service = BatteryServiceData()
71 # battery level data is 1 unsigned byte representing a percentage
72 battery_service.data = 85
73

74

75 def master(count=50):
76 """Sends out the device information."""
77 # using the "with" statement is highly recommended if the nRF24L01 is
78 # to be used for more than a BLE configuration
79 with nrf as ble:
80 ble.name = b"nRF24L01"
81 # include the radio's pa_level attribute in the payload
82 ble.show_pa_level = True
83 print(
84 "available bytes in next payload:",
85 ble.len_available(chunk(battery_service.buffer)),
86 ) # using chunk() gives an accurate estimate of available bytes
87 for i in range(count): # advertise data this many times
88 if ble.len_available(chunk(battery_service.buffer)) >= 0:
89 _prompt(count - i) # something to show that it isn't frozen

(continues on next page)

28 Chapter 3. OTA compatibility



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

90 # broadcast the device name, MAC address, &
91 # battery charge info; 0x16 means service data
92 ble.advertise(battery_service.buffer, data_type=0x16)
93 # channel hoping is recommended per BLE specs
94 ble.hop_channel()
95 time.sleep(0.5) # wait till next broadcast
96 # nrf.show_pa_level & nrf.name both are set to false when
97 # exiting a with statement block
98

99

100 # create an object for manipulating temperature measurements
101 temperature_service = TemperatureServiceData()
102 # temperature's float data has up to 2 decimal places of percision
103 temperature_service.data = 42.0
104

105

106 def send_temp(count=50):
107 """Sends out a fake temperature."""
108 with nrf as ble:
109 ble.name = b"nRF24L01"
110 print(
111 "available bytes in next payload:",
112 ble.len_available(chunk(temperature_service.buffer)),
113 )
114 for i in range(count):
115 if ble.len_available(chunk(temperature_service.buffer)) >= 0:
116 _prompt(count - i)
117 # broadcast a temperature measurement; 0x16 means service data
118 ble.advertise(temperature_service.buffer, data_type=0x16)
119 ble.hop_channel()
120 time.sleep(0.2)
121

122

123 # use the Eddystone protocol from Google to broadcast a URL as
124 # service data. We'll need an object to manipulate that also
125 url_service = UrlServiceData()
126 # the data attribute converts a URL string into a simplified
127 # bytes object using byte codes defined by the Eddystone protocol.
128 url_service.data = "http://www.google.com"
129 # Eddystone protocol requires an estimated TX PA level at 1 meter
130 # lower this estimate since we lowered the actual `ble.pa_level`
131 url_service.pa_level_at_1_meter = -45 # defaults to -25 dBm
132

133

134 def send_url(count=50):
135 """Sends out a URL."""
136 with nrf as ble:
137 print(
138 "available bytes in next payload:",
139 ble.len_available(chunk(url_service.buffer)),
140 )
141 # NOTE we did NOT set a device name in this with block

(continues on next page)

3.1. Fake BLE Example 29



nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

142 for i in range(count):
143 # URLs easily exceed the nRF24L01's max payload length
144 if ble.len_available(chunk(url_service.buffer)) >= 0:
145 _prompt(count - i)
146 ble.advertise(url_service.buffer, 0x16)
147 ble.hop_channel()
148 time.sleep(0.2)
149

150

151 def slave(timeout=6):
152 """read and decipher BLE payloads for `timeout` seconds."""
153 nrf.listen = True
154 end_timer = time.monotonic() + timeout
155 while time.monotonic() <= end_timer:
156 if nrf.available():
157 result = nrf.read()
158 print(
159 "recevied payload from MAC address",
160 address_repr(result.mac, delimit=":")
161 )
162 if result.name is not None:
163 print("\tdevice name:", result.name)
164 if result.pa_level is not None:
165 print("\tdevice transmitting PA Level:", result.pa_level, "dbm")
166 for service_data in result.data:
167 if isinstance(service_data, (bytearray, bytes)):
168 print("\traw buffer:", address_repr(service_data, False, " "))
169 else:
170 print("\t" + repr(service_data))
171

172

3.2 TMRh20’s C++ libraries

All examples are designed to work with TMRh20’s RF24, RF24Network, and RF24Mesh libraries’ examples. This
Circuitpython library uses dynamic payloads enabled by default. TMRh20’s RF24 library uses static payload lengths
by default.

To make this circuitpython library compatible with TMRh20’s RF24 library:

1. set dynamic_payloads to False.

2. set allow_ask_no_ack to False.

3. set payload_length to the value that is passed to TMRh20’s RF24::setPayloadSize(). 32 is the default
(& maximum) payload length/size for both libraries.

Warning: Certain C++ datatypes allocate a different amount of memory depending on the board being used
in the Arduino IDE. For example, uint8_t isn’t always allocated to 1 byte of memory for certain boards.
Make sure you understand the amount of memory that different datatypes occupy in C++. This will help you
comprehend how to configure payload_length .

30 Chapter 3. OTA compatibility

https://github.com/nRF24/RF24/
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

For completness, TMRh20’s RF24 library uses a default value of 15 for the ard attribute, but this Circuitpython library
uses a default value of 3.

Table 1: Corresponding examples
circuitpython_nrf24l01 TMRh20’s C++ examples
nrf24l01_simple_test (1) RF24 gettingStarted
nrf24l01_ack_payload_test RF24 acknowledgementPayloads
nrf24l01_manual_ack_test (1) RF24 manualAcknowledgements
nrf24l01_multiceiver_test (1) RF24 multiceiverDemo
nrf24l01_stream_test (1) RF24 streamingData
nrf24l01_interrupt_test RF24 interruptConfigure
nrf24l01_context_test feature is not available in C++
nrf24l01_fake_ble_test feature is available via floe’s BTLE library
nrf24l01_network_test (2)

• all RF24Network examples except Network_Ping & Net-
work_Ping_Sleep

• all RF24Mesh examples except RF24Mesh_Example_Node2NodeExtra
(which may still work but the data is not interpretted as a string)

1 Some of the Circuitpython examples (that are compatible with TMRh20’s examples) contain 2 or 3 lines of code that are commented out for
easy modification. These lines look like this in the examples’ source code:

# uncomment the following 3 lines for compatibility with TMRh20 library
# nrf.allow_ask_no_ack = False
# nrf.dynamic_payloads = False
# nrf.payload_length = 4

2 When running the network examples, it is important to understand the typical network topology. Otherwise, entering incorrect answers to the
example’s user prompts may result in seemingly bad connections.

3.2. TMRh20’s C++ libraries 31

https://github.com/floe/BTLE
network_docs/topology.html


nRF24L01 Library Documentation, Release 2.1.0

32 Chapter 3. OTA compatibility



CHAPTER

FOUR

BASIC RF24 API

class circuitpython_nrf24l01.rf24.RF24(spi, csn, ce_pin, spi_frequency=10000000)
A driver class for the nRF24L01(+) transceiver radios.

This class aims to be compatible with other devices in the nRF24xxx product line that implement the Nordic
proprietary Enhanced ShockBurst Protocol (and/or the legacy ShockBurst Protocol), but officially only supports
(through testing) the nRF24L01 and nRF24L01+ devices.

Parameters

spi : SPI

The object for the SPI bus that the nRF24L01 is connected to.

Tip: This object is meant to be shared amongst other driver classes (like
adafruit_mcp3xxx.mcp3008 for example) that use the same SPI bus. Otherwise, multiple
devices on the same SPI bus with different spi objects may produce errors or undesirable
behavior.

csn : DigitalInOut The digital output pin that is connected to the nRF24L01’s CSN (Chip Se-
lect Not) pin. This is required.

ce_pin : DigitalInOut The digital output pin that is connected to the nRF24L01’s CE (Chip
Enable) pin. This is required.

spi_frequency : int Specify which SPI frequency (in Hz) to use on the SPI bus. This param-
eter only applies to the instantiated RF24 object and is made persistent via SPIDevice.

Changed in version 1.2.0:

• new spi_frequency parameter

• removed all keyword arguments in favor of using the provided corresponding attributes.

RF24.open_tx_pipe(address)→ None
Open a data pipe for TX transmissions.

Parameters

address : bytearray,bytes The virtual address of the receiving nRF24L01. The address speci-
fied here must match the address set to one of the RX data pipes of the receiving nRF24L01.
The existing address can be altered by writing a bytearray with a length less than 5. The
nRF24L01 will use the first address_length number of bytes for the RX address on the
specified data pipe.

33

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut
https://docs.python.org/3/library/functions.html#int
https://circuitpython.readthedocs.io/en/latest/shared-bindings/adafruit_bus_device/index.html#adafruit_bus_device.SPIDevice
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes


nRF24L01 Library Documentation, Release 2.1.0

Note: There is no option to specify which data pipe to use because the nRF24L01 only uses data pipe 0 in
TX mode. Additionally, the nRF24L01 uses the same data pipe (pipe 1) for receiving acknowledgement (ACK)
packets in TX mode when the auto_ack attribute is enabled for data pipe 0. Thus, RX pipe 0 is appropriated
with the TX address (specified here) when auto_ack is enabled for data pipe 0.

RF24.close_rx_pipe(pipe_number: int)→ None
Close a specific data pipe from RX transmissions.

Parameters

pipe_number : int The data pipe to use for RX transactions. This must be in range [0, 5].
Otherwise a IndexError exception is thrown.

Changed in version 1.2.0: removed the reset parameter. Addresses assigned to pipes will persist until changed
or power to the nRF24L01 is discontinued.

RF24.open_rx_pipe(pipe_number: int, address)→ None
Open a specific data pipe for RX transmissions.

Parameters

pipe_number : int The data pipe to use for RX transactions. This must be in range [0, 5].
Otherwise a IndexError exception is thrown.

address : bytearray,bytes The virtual address to the receiving nRF24L01. If using a
pipe_number greater than 1, then only the MSByte of the address is written, so make sure
MSByte (first character) is unique among other simultaneously receiving addresses. The ex-
isting address can be altered by writing a bytearray with a length less than 5. The nRF24L01
will use the first address_length number of bytes for the RX address on the specified data
pipe.

Note: The nRF24L01 shares the addresses’ last 4 LSBytes on data pipes 2 through 5. These shared LSBytes
are determined by the address set to data pipe 1.

RF24.listen
This attribute is the primary role as a radio.

Setting this attribute incorporates the proper transitioning to/from RX mode as it involves playing with the power
attribute and the nRF24L01’s CE pin. This attribute does not power down the nRF24L01, but will power it up if
needed; use power attribute set to False to put the nRF24L01 to sleep.

A valid input value is a bool in which:

• True enables RX mode. Additionally, per Appendix B of the nRF24L01+ Specifications Sheet, puts
nRF24L01 in power up mode. Notice the CE pin is be held HIGH during RX mode.

• False disables RX mode. As mentioned in above link, this puts nRF24L01’s power in Standby-I mode (CE
pin is LOW meaning low current & no transmissions) which is ideal for post-reception work. Disabing RX
mode doesn’t flush the RX FIFO buffers, so remember to flush your 3-level FIFO buffers when appropriate
using flush_tx() or flush_rx() (see also the read() function).

Note: When ack payloads are enabled, this attribute flushes the TX FIFO buffers upon exiting RX mode.
However, this attribute does not flush the TX FIFO buffers when entering RX mode. This is done to better
manage the ACK payloads loaded into the TX FIFO.

34 Chapter 4. Basic RF24 API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1091756
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

Changed in version 2.1.0: Prior to v2.1.0 this attribute would clear the status flags when entering RX mode. This
was removed to expedite applications that use manually transmitted acknowledgement payloads.

RF24.any()→ int
This function reports the next available payload’s length (in bytes).

Returns

• int of the size (in bytes) of an available RX payload (if any).

• 0 if there is no payload in the RX FIFO buffer.

RF24.available()→ bool
A bool describing if there is a payload in the RX FIFO.

This function is provided for convenience and is synonomous with the following statement:

# let `nrf` be the instantiated RF24 object
nrf.update() and nrf.pipe is not None

New in version 2.0.0.

RF24.read(length: Optional[int] = None)→ bytearray
This function is used to retrieve data from the RX FIFO.

The irq_dr status flag is reset autmotically. This function can also be used to fetch the last ACK packet’s payload
if ack is enabled.

Parameters

length : int

An optional parameter to specify how many bytes to read from the RX FIFO buffer. This
parameter is not constrained in any way.

• If this parameter is less than the length of the first available payload in the RX FIFO buffer,
then the payload will remain in the RX FIFO buffer until the entire payload is fetched by
this function.

• If this parameter is greater than the next available payload’s length, then additional data
from other payload(s) in the RX FIFO buffer are returned.

Note: The nRF24L01 will repeatedly return the last byte fetched from the RX FIFO buffer
when there is no data to return (even if the RX FIFO is empty). Be aware that a payload
is only removed from the RX FIFO buffer when the entire payload has been fetched by this
function. Notice that this function always starts reading data from the first byte of the first
available payload (if any) in the RX FIFO buffer. Remember the RX FIFO buffer can hold
up to 3 payloads at a maximum of 32 bytes each.

Returns

If the length parameter is not specified, then this function returns a bytearray of the RX pay-
load data or None if there is no payload. This also depends on the setting of dynamic_payloads
& payload_length attributes. Consider the following two scenarios:

• If the dynamic_payloads attribute is disabled, then the returned bytearray’s length is equal
to the user defined payload_length attribute for the data pipe that received the payload.

• If the dynamic_payloads attribute is enabled, then the returned bytearray’s length is equal
to the payload’s length

35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#None


nRF24L01 Library Documentation, Release 2.1.0

When the length parameter is specified, this function strictly returns a bytearray of that length
despite the contents of the RX FIFO.

New in version 1.2.0: length parameter

Changed in version 2.0.0: renamed this method from recv() to read() because it isn’t doing any actual receiv-
ing. Rather, it is only reading data from the RX FIFO that was already received/validated by the radio.

RF24.send(buf, ask_no_ack: bool = False, force_retry: int = 0, send_only: bool = False)
This blocking function is used to transmit payload(s).

Returns

• list if a list or tuple of payloads was passed as the buf parameter. Each item in the returned
list will contain the returned status for each corresponding payload in the list/tuple that was
passed. The return statuses will be in one of the following forms:

• False if transmission fails. Transmission failure can only be detected if auto_ack is en-
abled for data pipe 0.

• True if transmission succeeds.

• bytearray or True when the ack attribute is True. Because the payload expects a re-
sponding custom ACK payload, the response is returned (upon successful transmission) as a
bytearray (or True if ACK payload is empty). Returning the ACK payload can be bypassed
by setting the send_only parameter as True.

Parameters

buf : bytearray,bytes,list,tuple

The payload to transmit. This bytearray must have a length in range [1, 32], otherwise a
ValueError exception is thrown. This can also be a list or tuple of payloads (bytearray);
in which case, all items in the list/tuple are processed for consecutive transmissions.

• If the dynamic_payloads attribute is disabled for data pipe 0 and this bytearray’s
length is less than the payload_length attribute for pipe 0, then this bytearray is
padded with zeros until its length is equal to the payload_length attribute for pipe 0.

• If the dynamic_payloads attribute is disabled for data pipe 0 and this bytearray’s
length is greater than payload_length attribute for pipe 0, then this bytearray’s
length is truncated to equal the payload_length attribute for pipe 0.

ask_no_ack : bool

Pass this parameter as True to tell the nRF24L01 not to wait for an acknowledgment from the
receiving nRF24L01. This parameter directly controls a NO_ACK flag in the transmission’s
Packet Control Field (9 bits of information about the payload). Therefore, it takes advantage
of an nRF24L01 feature specific to individual payloads, and its value is not saved anywhere.
You do not need to specify this for every payload if the auto_ack attribute is disabled (for
data pipe 0), however setting this parameter to True will work despite the auto_ack at-
tribute’s setting.

Important: If the allow_ask_no_ack attribute is disabled (set to False), then this pa-
rameter will have no affect at all. By default the allow_ask_no_ack attribute is enabled.

Note: Each transmission is in the form of a packet. This packet contains sections of data
around and including the payload. See Chapter 7.3 in the nRF24L01 Specifications Sheet

36 Chapter 4. Basic RF24 API

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318


nRF24L01 Library Documentation, Release 2.1.0

for more details.

force_retry : int The number of brute-force attempts to resend() a failed transmission. De-
fault is 0. This parameter has no affect on transmissions if auto_ack is disabled or if
ask_no_ack parameter is set to True. Each re-attempt still takes advantage of Auto-Retry
feature. During multi-payload processing, this parameter is meant to slow down Circuit-
Python devices just enough for the Raspberry Pi to catch up (due to the Raspberry Pi’s
seemingly slower SPI speeds).

send_only : bool This parameter only applies when the ack attribute is set to True. Pass this
parameter as True if the RX FIFO is not to be manipulated. Many other libraries’ behave
as though this parameter is True (e.g. The popular TMRh20 Arduino RF24 library). This
parameter defaults to False. If this parameter is set to True, then use read() to get the
ACK payload (if there is any) from the RX FIFO. Remember that the RX FIFO can only
hold up to 3 payloads at once.

Tip: It is highly recommended that auto_ack attribute is enabled when sending multiple payloads. Test results
with the auto_ack attribute disabled were rather poor (less than 79% received by a Raspberry Pi). This same
advice applies to the ask_no_ack parameter (leave it as False for multiple payloads).

Warning: The nRF24L01 will block usage of the TX FIFO buffer upon failed transmissions. Failed trans-
mission’s payloads stay in TX FIFO buffer until the MCU calls flush_tx() and clear_status_flags().
Therefore, this function will discard any payloads in the TX FIFO when called, but failed transmissions’
payloads will remain in the TX FIFO until send() or flush_tx() is called after failed transmissions.

New in version 1.2.0: send_only parameter

37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
configure.html#auto-retry-feature
configure.html#auto-retry-feature
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

38 Chapter 4. Basic RF24 API



CHAPTER

FIVE

ADVANCED RF24 API

RF24.resend(send_only: bool = False)
Manually re-send the first-out payload from TX FIFO buffers.

This function is meant to be used for payloads that failed to transmit using the send() function. If a payload
failed to transmit using the write() function, just call clear_status_flags() and re-start the pulse on the
nRF24L01’s CE pin.

Returns Data returned from this function follows the same pattern that send() returns with the
added condition that this function will return False if the TX FIFO buffer is empty.

Parameters

send_only : bool This parameter only applies when the ack attribute is set to True. Pass this
parameter as True if the RX FIFO is not to be manipulated. Many other libraries’ behave
as though this parameter is True (e.g. The popular TMRh20 Arduino RF24 library). This
parameter defaults to False. If this parameter is set to True, then use read() to get the
ACK payload (if there is any) from the RX FIFO. Remember that the RX FIFO can only
hold up to 3 payloads at once.

Note: The nRF24L01 normally removes a payload from the TX FIFO buffer after successful transmission, but
not when this function is called. The payload (successfully transmitted or not) will remain in the TX FIFO buffer
until flush_tx() is called to remove them. Alternatively, using this function also allows the failed payload to
be over-written by using send() or write() to load a new payload into the TX FIFO buffer.

RF24.write(buf, ask_no_ack: bool = False, write_only: bool = False)→ bool
This non-blocking and helper function to send() can only handle one payload at a time.

This function isn’t completely non-blocking as we still need to wait for the necessary SPI transactions to complete.
Example usage of this function can be seen in the IRQ pin example and in the Stream example’s “master_fifo()”
function

Returns True if the payload was added to the TX FIFO buffer. False if the TX FIFO buffer is
already full, and no payload could be added to it.

Parameters

buf : bytearray

The payload to transmit. This bytearray must have a length greater than 0 and less than 32
bytes, otherwise a ValueError exception is thrown.

• If the dynamic_payloads attribute is disabled for data pipe 0 and this bytearray’s length
is less than the payload_length attribute for data pipe 0, then this bytearray is padded
with zeros until its length is equal to the payload_length attribute for data pipe 0.

39

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
examples.html#irq-pin-example
examples.html#stream-example
examples.html#stream-example
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/exceptions.html#ValueError


nRF24L01 Library Documentation, Release 2.1.0

• If the dynamic_payloads attribute is disabled for data pipe 0 and this bytearray’s length
is greater than payload_length attribute for data pipe 0, then this bytearray’s length is
truncated to equal the payload_length attribute for data pipe 0.

ask_no_ack : bool

Pass this parameter as True to tell the nRF24L01 not to wait for an acknowledgment from the
receiving nRF24L01. This parameter directly controls a NO_ACK flag in the transmission’s
Packet Control Field (9 bits of information about the payload). Therefore, it takes advantage
of an nRF24L01 feature specific to individual payloads, and its value is not saved anywhere.
You do not need to specify this for every payload if the auto_ack attribute is disabled,
however setting this parameter to True will work despite the auto_ack attribute’s setting.

Important: If the allow_ask_no_ack attribute is disabled (set to False), then this pa-
rameter will have no affect at all. By default the allow_ask_no_ack attribute is enabled.

Note: Each transmission is in the form of a packet. This packet contains sections of data
around and including the payload. See Chapter 7.3 in the nRF24L01 Specifications Sheet
for more details.

write_only : bool

This function will not manipulate the nRF24L01’s CE pin if this parameter is True. The
default value of False will ensure that the CE pin is HIGH upon exiting this function. This
function does not set the CE pin LOW at any time. Use this parameter as True to fill the TX
FIFO buffer before beginning transmissions.

Note: The nRF24L01 doesn’t initiate sending until a mandatory minimum 10 µs pulse on
the CE pin is acheived. If the write_only parameter is False, then that pulse is initiated
before this function exits. However, we have left that 10 µs wait time to be managed by the
MCU in cases of asychronous application, or it is managed by using send() instead of this
function. According to the Specification sheet, if the CE pin remains HIGH for longer than
10 µs, then the nRF24L01 will continue to transmit all payloads found in the TX FIFO buffer.

Warning: A note paraphrased from the nRF24L01+ Specifications Sheet:

It is important to NEVER to keep the nRF24L01+ in TX mode for more than 4 ms at a time. If the [auto_ack
attribute is] enabled, nRF24L01+ is never in TX mode longer than 4 ms.

Tip: Use this function at your own risk. Because of the underlying “Enhanced ShockBurst Protocol”, disobey-
ing the 4 ms rule is easily avoided if the auto_ack attribute is greater than 0. Alternatively, you MUST use
nRF24L01’s IRQ pin and/or user-defined timer(s) to AVOID breaking the 4 ms rule. If the nRF24L01+ Spec-
ifications Sheet explicitly states this, we have to assume radio damage or misbehavior as a result of disobeying
the 4 ms rule. See also table 18 in the nRF24L01 specification sheet for calculating an adequate transmission
timeout sentinal.

New in version 1.2.0: write_only parameter

RF24.load_ack(buf, pipe_number: int)→ bool
Load a payload into the TX FIFO for use on a specific data pipe.

40 Chapter 5. Advanced RF24 API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132607
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


nRF24L01 Library Documentation, Release 2.1.0

This payload will then be appended to the automatic acknowledgment (ACK) packet that is sent when new data
is received on the specified pipe. See read() on how to fetch a received custom ACK payloads.

Parameters

buf : bytearray,bytes This will be the data attached to an automatic ACK packet on the incom-
ing transmission about the specified pipe_number parameter. This must have a length in
range [1, 32] bytes, otherwise a ValueError exception is thrown. Any ACK payloads will
remain in the TX FIFO buffer until transmitted successfully or flush_tx() is called.

pipe_number : int This will be the pipe number to use for deciding which transmissions get
a response with the specified buf parameter’s data. This number must be in range [0, 5],
otherwise a IndexError exception is thrown.

Returns True if payload was successfully loaded onto the TX FIFO buffer. False if it wasn’t because
TX FIFO buffer is full.

Note: this function takes advantage of a special feature on the nRF24L01 and needs to be called for every time
a customized ACK payload is to be used (not for every automatic ACK packet – this just appends a payload to
the ACK packet). The ack , auto_ack , and dynamic_payloads attributes are also automatically enabled (with
respect to data pipe 0) by this function when necessary.

Tip: The ACK payload must be set prior to receiving a transmission. It is also worth noting that the nRF24L01
can hold up to 3 ACK payloads pending transmission. Using this function does not over-write existing ACK
payloads pending; it only adds to the queue (TX FIFO buffer) if it can. Use flush_tx() to discard unused ACK
payloads when done listening.

RF24.power
This bool attribute controls the power state of the nRF24L01.

This is exposed for convenience.

• False basically puts the nRF24L01 to sleep (AKA power down mode) with ultra-low current consumption.
No transmissions are executed when sleeping, but the nRF24L01 can still be accessed through SPI. Upon
instantiation, this driver class puts the nRF24L01 to sleep until the MCU invokes RX/TX modes. This
driver class will only power down the nRF24L01 after exiting a The with statement block.

• True powers up the nRF24L01. This is the first step towards entering RX/TX modes (see also listen at-
tribute). Powering up is automatically handled by the listen attribute as well as the send() and write()
functions.

Note: This attribute needs to be True if you want to put radio on Standby-II (highest current consumption) or
Standby-I (moderate current consumption) modes. The state of the CE pin determines which Standby mode is
acheived. See Chapter 6.1.2-7 of the nRF24L01+ Specifications Sheet for more details.

RF24.address_length
This int is the length (in bytes) used of RX/TX addresses.

A valid input value must be an int in range [3, 5]. Default is set to the nRF24L01’s maximum of 5. Any invalid
input value results in a address length of 2 bytes.

Changed in version 2.1.0: A ValueError exception was thrown when an invalid input value was encountered.
This changed to setting the address length to 2 bytes (for possible reverse engineering protocol purposes).

41

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132980
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError


nRF24L01 Library Documentation, Release 2.1.0

RF24.address(index: int = - 1)
Returns the current TX address or optionally RX address. (read-only)

This function returns the full content of the nRF24L01’s registers about RX/TX addresses despite what
address_length is set to.

Parameters

index : int the number of the data pipe whose address is to be returned. A valid index
ranges [0,5] for RX addresses or any negative number for the TX address. Otherwise an
IndexError is thown. This parameter defaults to -1.

New in version 1.2.0.

RF24.last_tx_arc
Return the number of attempts made for last transission (read-only).

This attribute resets to 0 at the beginning of every transmission in TX mode. Remember that the num-
ber of automatic retry attempts made for each transmission is configured with the arc attribute or the
set_auto_retries() function.

RF24.is_plus_variant
A bool descibing if the nRF24L01 is a plus variant or not (read-only).

This information is detirmined upon instantiation.

New in version 1.2.0.

5.1 Debugging Output

RF24.print_details(dump_pipes: bool = False)
This debuggung function outputs all details about the nRF24L01.

Some information may be irrelevant depending on nRF24L01’s state/condition.

Prints

• Is a plus variant True means the transceiver is a nRF24L01+. False means the
transceiver is a nRF24L01 (not a plus variant).

• Channel The current setting of the channel attribute

• RF Data Rate The current setting of the RF data_rate attribute.

• RF Power Amplifier The current setting of the pa_level attribute.

• CRC bytes The current setting of the crc attribute

• Address length The current setting of the address_length attribute

• TX Payload lengths The current setting of the payload_length attribute for TX oper-
ations (concerning data pipe 0)

• Auto retry delay The current setting of the ard attribute

• Auto retry attempts The current setting of the arc attribute

• Re-use TX FIFO Is the first payload in the TX FIFO to be re-used for subsequent transmis-
sions (this flag is set to True when entering resend() and reset to False when resend()
exits)

• Packets lost on current channel Total amount of packets lost (transmission fail-
ures). This only resets when the channel is changed. This count will only go up to 15.

42 Chapter 5. Advanced RF24 API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

• Retry attempts made for last transmission Amount of attempts to re-transmit
during last transmission (resets per payload)

• IRQ on Data Ready The current setting of the IRQ pin on “Data Ready” event

• IRQ on Data Sent The current setting of the IRQ pin on “Data Sent” event

• IRQ on Data Fail The current setting of the IRQ pin on “Data Fail” event

• Data Ready Is there RX data ready to be read? (state of the irq_dr flag)

• Data Sent Has the TX data been sent? (state of the irq_ds flag)

• Data FailedHas the maximum attempts to re-transmit been reached? (state of the irq_df
flag)

• TX FIFO full Is the TX FIFO buffer full? (state of the tx_full flag)

• TX FIFO empty Is the TX FIFO buffer empty?

• RX FIFO full Is the RX FIFO buffer full?

• RX FIFO empty Is the RX FIFO buffer empty?

• Custom ACK payload Is the nRF24L01 setup to use an extra (user defined) payload at-
tached to the acknowledgment packet? (state of the ack attribute)

• Ask no ACK The current setting of the allow_ask_no_ack attribute.

• Automatic Acknowledgment The status of the auto_ack feature. If this value is a binary
representation, then each bit represents the feature’s status for each pipe.

• Dynamic Payloads The status of the dynamic_payloads feature. If this value is a binary
representation, then each bit represents the feature’s status for each pipe.

• Primary Mode The current mode (RX or TX) of communication of the nRF24L01 device.

• Power Mode The power state can be Off, Standby-I, Standby-II, or On.

Parameters

dump_pipes : bool

True appends the output and prints:

• the current address used for TX transmissions. This value is the entire content of the
nRF24L01’s register about the TX address (despite what address_length is set to).

• Pipe [#] ([open/closed]) bound: [address] where # represent the pipe num-
ber, the open/closed status is relative to the pipe’s RX status, and address is the full
value stored in the nRF24L01’s RX address registers (despite what address_length is
set to).

• if the pipe is open, then the output also prints expecting [X] byte static payloads
where X is the payload_length (in bytes) the pipe is setup to receive when
dynamic_payloads is disabled for that pipe.

Set this parameter to False (it default value) to skips this extra information.

Changed in version v2.1.0: Changed the default value for the dump_pipes parameter to True

RF24.print_pipes()
Prints all information specific to pipe’s addresses, RX state, & expected static payload sizes (if configured to use
static payloads).

This method is called from print_details() if the dump_pipes parameter is set to True.

5.1. Debugging Output 43

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


nRF24L01 Library Documentation, Release 2.1.0

Changed in version v2.1.0: Changed this method’s name from the private method _dump_pipes() to a public
method print_pipes().

circuitpython_nrf24l01.rf24.address_repr(buf, reverse: bool = True, delimit: str = '')→ str
Convert a buffer into a hexlified string.

This method is primarily used in print_pipes() to display how the address is used by the radio.

>>> from circuitpython_nrf24l01.rf24 import address_repr
>>> address_repr(b"1Node")
'65646F4E31'

Parameters

buf : bytes,bytearray The buffer of bytes to convert into a hexlified string.

reverse : bool A bool to control the resulting endianess. True outputs the result as big endian.
False outputs the result as little endian. This parameter defaults to True since bytearray
and bytes objects are stored in big endian but written in little endian.

delimit : str A chr or str to use as a delimiter between bytes. Defaults to an empty string.

Returns A string of hexidecimal characters in big endian form of the specified buf parameter.

5.2 Status Byte

RF24.tx_full
An bool to represent if the TX FIFO is full. (read-only)

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS byte
that’s always returned from any other SPI transactions. Use the update() function to manually refresh this data
when needed (especially after calling flush_tx()).

Returns

• True for TX FIFO buffer is full

• False for TX FIFO buffer is not full. This doesn’t mean the TX FIFO buffer is empty.

RF24.irq_dr
A bool that represents the “Data Ready” interrupted flag. (read-only)

Returns

• True represents Data is in the RX FIFO buffer

• False represents anything depending on context (state/condition of FIFO buffers); usually
this means the flag’s been reset.

Important: It is recommended that this flag is only used when the IRQ pin is active. To detirmine if there is a
payload in the RX FIFO, use fifo(), any(), or pipe. Notice that calling read() also resets this status flag.

Pass data_recv parameter as True to clear_status_flags() and reset this. As this is a virtual representation
of the interrupt event, this attribute will always be updated despite what the actual IRQ pin is configured to do
about this event.

44 Chapter 5. Advanced RF24 API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#chr
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


nRF24L01 Library Documentation, Release 2.1.0

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS byte
that’s always returned from any other SPI transactions. Use the update() function to manually refresh this data
when needed (especially after calling clear_status_flags()).

RF24.irq_df
A bool that represents the “Data Failed” interrupted flag. (read-only)

Returns

• True signifies the nRF24L01 attemped all configured retries

• False represents anything depending on context (state/condition); usually this means the
flag’s been reset.

Important: This can only return True if auto_ack is enabled, otherwise this will always be False.

Pass data_fail parameter as True to clear_status_flags() and reset this. As this is a virtual representation
of the interrupt event, this attribute will always be updated despite what the actual IRQ pin is configured to do
about this event.

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS byte
that’s always returned from any other SPI transactions. Use the update() function to manually refresh this data
when needed (especially after calling clear_status_flags()).

RF24.irq_ds
A bool that represents the “Data Sent” interrupted flag. (read-only)

Returns

• True represents a successful transmission

• False represents anything depending on context (state/condition of FIFO buffers); usually
this means the flag’s been reset.

Pass data_sent parameter as True to clear_status_flags() and reset this. As this is a virtual representation
of the interrupt event, this attribute will always be updated despite what the actual IRQ pin is configured to do
about this event.

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS byte
that’s always returned from any other SPI transactions. Use the update() function to manually refresh this data
when needed (especially after calling clear_status_flags()).

RF24.update()→ True
This function gets an updated status byte over SPI.

Refreshing the status byte is vital to checking status of the interrupt flags, RX pipe number related to current
RX payload, and if the TX FIFO buffer is full. This function returns nothing, but internally updates the irq_dr,
irq_ds, irq_df , pipe, and tx_full attributes. Internally this is a helper function to available(), send(),
and resend() functions.

Returns True for every call. This value is meant to allow this function to be used in The if
statement or The while statement in conjunction with attributes related to the refreshed
status byte.

Changed in version 1.2.3: arbitrarily returns True

RF24.pipe
The number of the data pipe that received the next available payload in the RX FIFO. (read only)

Changed in version 1.2.0: In previous versions of this library, this attribute was a read-only function (pipe()).

5.2. Status Byte 45

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#while
https://docs.python.org/3/library/constants.html#True


nRF24L01 Library Documentation, Release 2.1.0

Calling this does not execute an SPI transaction. It only exposes that latest data contained in the STATUS byte
that’s always returned from any other SPI transactions. Use the update() function to manually refresh this data
when needed (especially after calling flush_rx()).

Returns

• None if there is no payload in RX FIFO.

• The int identifying pipe number [0,5] that received the next available payload in the RX
FIFO buffer.

RF24.clear_status_flags(data_recv: bool = True, data_sent: bool = True, data_fail: bool = True)
This clears the interrupt flags in the status register.

Internally, this is automatically called by send(), write(), read().

Parameters

data_recv : bool specifies wheather to clear the “RX Data Ready” (irq_dr) flag.

data_sent : bool specifies wheather to clear the “TX Data Sent” (irq_ds) flag.

data_fail : bool specifies wheather to clear the “Max Re-transmit reached” (irq_df ) flag.

Note: Clearing the data_fail flag is necessary for continued transmissions from the nRF24L01 (locks the TX
FIFO buffer when irq_df is True) despite wheather or not the MCU is taking advantage of the interrupt (IRQ)
pin. Call this function only when there is an antiquated status flag (after you’ve dealt with the specific payload
related to the staus flags that were set), otherwise it can cause payloads to be ignored and occupy the RX/TX
FIFO buffers. See Appendix A of the nRF24L01+ Specifications Sheet for an outline of proper behavior.

5.3 FIFO management

RF24.flush_rx()
Flush all 3 levels of the RX FIFO.

Note: The nRF24L01 RX FIFO is 3 level stack that holds payload data. This means that there can be up to 3
received payloads (each of a maximum length equal to 32 bytes) waiting to be read (and removed from the stack)
by read(). This function clears all 3 levels.

RF24.flush_tx()
Flush all 3 levels of the TX FIFO.

Note: The nRF24L01 TX FIFO is 3 level stack that holds payload data. This means that there can be up to 3
payloads (each of a maximum length equal to 32 bytes) waiting to be transmit by send(), resend() or write().
This function clears all 3 levels. It is worth noting that the payload data is only removed from the TX FIFO stack
upon successful transmission (see also resend() as the handling of failed transmissions can be altered).

RF24.fifo(about_tx: bool = False, check_empty: Optional[bool] = None)
This provides the status of the TX/RX FIFO buffers. (read-only)

Parameters

about_tx : bool

• True means the information returned is about the TX FIFO buffer.

46 Chapter 5. Advanced RF24 API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1047965
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True


nRF24L01 Library Documentation, Release 2.1.0

• False means the information returned is about the RX FIFO buffer. This parameter de-
faults to False when not specified.

check_empty : bool

• True tests if the specified FIFO buffer is empty.

• False tests if the specified FIFO buffer is full.

• None (when not specified) returns a 2 bit number representing both empty (bit 1) & full
(bit 0) tests related to the FIFO buffer specified using the about_tx parameter.

Returns

• A bool answer to the question:

”Is the [TX/RX](about_tx) FIFO buffer [empty/full](check_empty)?

• If the check_empty parameter is not specified: an int in range [0, 2] for which:

– 1 means the specified FIFO buffer is empty

– 2 means the specified FIFO buffer is full

– 0 means the specified FIFO buffer is neither full nor empty

5.4 Ambiguous Signal Detection

RF24.rpd
Returns True if signal was detected or False if not. (read-only)

The RPD (Received Power Detector) flag is triggered in the following cases:

1. During RX mode (when listen is True) and an arbitrary RF transmission with a gain above -64 dBm
threshold is/was present.

2. When a packet is received (instigated by the nRF24L01 used to detect/”listen” for incoming packets).

Note: See also section 6.4 of the Specification Sheet concerning the RPD flag. Ambient temperature affects the
-64 dBm threshold. The latching of this flag happens differently under certain conditions.

New in version 1.2.0.

RF24.start_carrier_wave()
Starts a continuous carrier wave test.

This is a basic test of the nRF24L01’s TX output. It is a commonly required test for telecommunication reg-
ulations. Calling this function may introduce interference with other transceivers that use frequencies in range
[2.4, 2.525] GHz. To verify that this test is working properly, use the following code on a seperate nRF24L01
transceiver:

# declare objects for SPI bus and CSN pin and CE pin
nrf. = RF24(spi, csn, ce)
# set nrf.pa_level, nrf.channel, & nrf.data_rate values to
# match the corresponding attributes on the device that is
# transmitting the carrier wave
nrf.listen = True
if nrf.rpd:

print("carrier wave detected")

5.4. Ambiguous Signal Detection 47

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1160291


nRF24L01 Library Documentation, Release 2.1.0

The pa_level, channel & data_rate attributes are vital factors to the success of this test. Be sure these
attributes are set to the desired test conditions before calling this function. See also the rpd attribute.

Note: To preserve backward compatibility with non-plus variants of the nRF24L01, this function will also
change certain settings if is_plus_variant is False. These settings changes include

• disabling crc

• disabling auto_ack

• disabling arc and setting ard to 250 microseconds

• changing the TX address to b"\xFF\xFF\xFF\xFF\xFF"

• loading a 32-byte payload (each byte is 0xFF) into the TX FIFO buffer

Finally the radio continuously behaves like using resend() to establish the constant carrier wave. If
is_plus_variant is True, then none of these changes are needed nor applied.

New in version 1.2.0.

RF24.stop_carrier_wave()
Stops a continuous carrier wave test.

See start_carrier_wave() for more details.

Note: Calling this function puts the nRF24L01 to sleep (AKA power down mode).

Hint: If the radio is a non-plus variant (is_plus_variant returns False), then use The with statement
to re-establish the previous settings:

# let `nrf` be the instantiated RF24 object
with nrf:

pass # settings are now restored

New in version 1.2.0.

48 Chapter 5. Advanced RF24 API

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/reference/compound_stmts.html#with


CHAPTER

SIX

CONFIGURABLE RF24 API

RF24.ack
Represents use of custom payloads as part of the ACK packet.

Use this attribute to set/check if the custom ACK payloads feature is enabled (True) or disabled (False). Default
setting is False.

Note: This attribute differs from the auto_ack attribute because the auto_ack attribute enables or disables
the use of automatic ACK packets. By default, ACK packets have no payload. This attribute enables or disables
attaching payloads to the ACK packets.

See also:

Use load_ack() attach ACK payloads.

Use read(), send(), resend() to retrieve ACK payloads.

Important: As dynamic_payloads and auto_ack attributes are required for this feature to work, they
are automatically enabled (on data pipe 0) as needed. However, it is required to enable the auto_ack and
dynamic_payloads features on all applicable pipes. Disabling this feature does not disable the auto_ack and
dynamic_payloads attributes for any data pipe; they work just fine without this feature.

RF24.allow_ask_no_ack
Allow or disable ask_no_ack parameter to send() & write().

This attribute is enabled by default, and it only exists to provide support for the Si24R1. The designers of the
Si24R1 (a cheap chinese clone of the nRF24L01) happened to clone a typo from the first version of the nRF24L01
specification sheet. Disable this attribute for the Si24R1.

RF24.interrupt_config(data_recv: bool = True, data_sent: bool = True, data_fail: bool = True)
Sets the configuration of the nRF24L01’s IRQ pin. (write-only)

The digital signal from the nRF24L01’s IRQ (Interrupt ReQuest) pin is active LOW.

Parameters

data_recv : bool If this is True, then IRQ pin goes active when new data is put into the RX
FIFO buffer. Default setting is True

data_sent : bool If this is True, then IRQ pin goes active when a payload from TX buffer is
successfully transmit. Default setting is True

data_fail : bool If this is True, then IRQ pin goes active when the maximum number of
attempts to re-transmit the packet have been reached. If auto_ack attribute is disabled for
pipe 0, then this IRQ event is not used. Default setting is True

49

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


nRF24L01 Library Documentation, Release 2.1.0

Note: To fetch the status (not configuration) of these IRQ flags, use the irq_df , irq_ds, irq_dr attributes
respectively.

Tip: Paraphrased from nRF24L01+ Specification Sheet:

The procedure for handling irq_dr IRQ should be:

1. retreive the payload from RX FIFO using read()

2. clear irq_dr status flag (taken care of by using read() in previous step)

3. read FIFO_STATUS register to check if there are more payloads available in RX FIFO buffer. A call to
pipe (may require update() to be called beforehand), any() or even (False, True) as parameters to
fifo() will get this result.

4. if there is more data in RX FIFO, repeat from step 1

RF24.data_rate
This int attribute specifies the RF data rate.

A valid input value is:

• 1 sets the frequency data rate to 1 Mbps

• 2 sets the frequency data rate to 2 Mbps

• 250 sets the frequency data rate to 250 kbps (see warning below)

Any invalid input throws a ValueError exception. Default is 1 Mbps.

Warning: 250 kbps is not available for all variants of transceivers based on the nRF24L01. This library will
assume that the transceiver being used does support 250 kbps, but there is no way to determine (via software)
if that is actually the case. Please refer to your transceiver’s manufacturer information to determine if 250
kbps is supposed to be supported.

Hint: You can perform a carrier wave test on 250 kbps to see if you transceiver hardware does support that
data rate. See start_carrier_wave(), stop_carrier_wave(), and rpd to execute a hardware test.

Changed in version 2.2.0: Blindly allow confiuring the radio for 250 kbps as support is marginally dependent on
the hardware being used.

RF24.channel
This int attribute specifies the nRF24L01’s frequency.

A valid input value must be in range [0, 125] (that means [2.4, 2.525] GHz). Otherwise a ValueError exception
is thrown. Default is 76 (2.476 GHz).

RF24.crc
This int attribute specifies the CRC checksum length in bytes.

CRC (cyclic redundancy checking) is a way of making sure that the transmission didn’t get corrupted over the
air.

A valid input value must be:

• 0 disables CRC (no anti-corruption of data)

50 Chapter 6. Configurable RF24 API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

• 1 enables CRC encoding scheme using 1 byte (weak anti-corruption of data)

• 2 enables CRC encoding scheme using 2 bytes (better anti-corruption of data)

Any invalid input will be clamped to range [0, 2]. Default is enabled using 2 bytes.

Note: The nRF24L01 automatically enables CRC if automatic acknowledgment feature is enabled (see
auto_ack attribute) for any data pipe.

Changed in version 2.0.0: Invalid input values are clamped to proper range instead of throwing a ValueError
exception.

RF24.pa_level
This int is the power amplifier level (in dBm).

Higher levels mean the transmission will cover a longer distance. Use this attribute to tweak the nRF24L01
current consumption on projects that don’t span large areas.

A valid input value is:

• -18 sets the nRF24L01’s power amplifier to -18 dBm (lowest)

• -12 sets the nRF24L01’s power amplifier to -12 dBm

• -6 sets the nRF24L01’s power amplifier to -6 dBm

• 0 sets the nRF24L01’s power amplifier to 0 dBm (highest)

If this attribute is set to a list or tuple, then the list/tuple must contain the desired power amplifier level (from
list above) at index 0 and a bool to control the Low Noise Amplifier (LNA) feature at index 1. All other indices
will be discarded.

Note: The LNA feature setting only applies to the nRF24L01 (non-plus variant).

Any invalid input will invoke the default of 0 dBm with LNA enabled.

RF24.is_lna_enabled
A read-only bool attribute about the LNA gain feature.

LNA stands for Low Noise Amplifier. See pa_level attribute about how to set this. Default is always enabled,
but this feature is specific to non-plus variants of nRF24L01 transceivers. If is_plus_variant attribute is
True, then setting feature in any way has no affect.

6.1 dynamic_payloads

Note: This attribute mostly relates to RX operations, but data pipe 0 applies to TX operations also.

RF24.dynamic_payloads
This int attribute is the dynamic payload length feature for any/all pipes.

Default setting is enabled on all pipes. A valid input is:

• A bool to enable (True) or disable (False) the dynamic payload length feature for all data pipes.

• A list or tuple containing booleans or integers can be used control this feature per data pipe. Index 0
controls this feature on data pipe 0. Indices greater than 5 will be ignored since there are only 6 data pipes.

6.1. dynamic_payloads 51

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple


nRF24L01 Library Documentation, Release 2.1.0

If any index’s value is less than 0 (a negative value), then the pipe corresponding to that index will remain
unaffected.

• An intwhere each bit in the integer represents the dynamic payload feature per pipe. Bit position 0 controls
this feature for data pipe 0, and bit position 5 controls this feature for data pipe 5. All bits in positions greater
than 5 are ignored.

Note:

• The payload_length attribute is ignored when this feature is enabled for any respective data pipes.

• Be sure to adjust the payload_length attribute accordingly when this feature is disabled for any respective
data pipes.

Returns An int (1 unsigned byte) where each bit in the integer represents the dynamic payload
length feature per pipe.

Changed in version 1.2.0: Accepts a list or tuple for control of the dynamic payload length feature per pipe.

Changed in version 2.0.0:

• Returns a integer instead of a boolean

• Accepts an integer for binary control of the dynamic payload length feature per pipe

RF24.set_dynamic_payloads(enable: bool, pipe_number: Optional[int] = None)
Control the dynamic payload feature for a specific data pipe.

Parameters

enable : bool The state of the dynamic payload feature about a specified data pipe.

pipe_number : int The specific data pipe number in range [0, 5] to apply the enable parameter.
If this parameter is not specified the enable parameter is applied to all data pipes. If this
parameter is not in range [0, 5], then a IndexError exception is thrown.

New in version 2.0.0.

RF24.get_dynamic_payloads(pipe_number: int = 0)→ bool
Returns a bool describing the dynamic payload feature about a pipe.

Parameters

pipe_number : int The specific data pipe number in range [0, 5] concerning the dynamic pay-
load length feature. If this parameter is not in range [0, 5], then a IndexError exception is
thrown. If this parameter is not specified, then the data returned is about data pipe 0.

6.2 payload_length

Note: This attribute mostly relates to RX operations, but data pipe 0 applies to TX operations also.

RF24.payload_length
This int attribute is the length of static payloads for any/all pipes.

This attribute can be used to specify the static payload length used for all data pipes in which the
dynamic_payloads attribute is disabled

52 Chapter 6. Configurable RF24 API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

A valid input value must be:

• an int in which the value that will be clamped to the range [1, 32]. Setting this attribute to a single int
configures all 6 data pipes.

• A list or tuple containing integers can be used control this feature per data pipe. Index 0 controls this
feature on data pipe 0. Indices greater than 5 will be ignored since there are only 6 data pipes. If any index’s
value is less than or equal to``0``, then the existing setting for the corresponding data pipe will persist (not
be changed).

Default is set to the nRF24L01’s maximum of 32 (on all data pipes).

Returns The current setting of the expected static payload length feature for pipe 0 only.

Changed in version 1.2.0: Return a list of all payload length settings for all pipes. This implementation introduced
a couple bugs:

1. The settings could be changed improperly in a way that was not written to the nRF24L01 registers.

2. There was no way to catch an invalid setting if configured improperly via the first bug. This led to errors
in using other functions that handle payloads or the length of payloads.

Changed in version 2.0.0: This attribute returns the configuration about static payload length for data pipe 0 only.
Use get_payload_length() to fetch the configuration of the static payload length feature for any data pipe.

RF24.set_payload_length(length: int, pipe_number: Optional[int] = None)
Sets the static payload length feature for each/all data pipes.

This function only affects data pipes for which the dynamic_payloads attribute is disabled.

Parameters

length : int The number of bytes in range [1, 32] for to be used for static payload lengths. If
this number is not in range [1, 32], then it will be clamped to that range.

pipe_number : int The specific data pipe number in range [0, 5] to apply the length parameter.
If this parameter is not specified the length parameter is applied to all data pipes. If this
parameter is not in range [0, 5], then a IndexError exception is thrown.

New in version 2.0.0.

RF24.get_payload_length(pipe_number: int = 0)→ int
Returns an int describing the specified data pipe’s static payload length.

The data returned by this function is only relevant for data pipes in which the dynamic_payloads attribute is
disabled.

Parameters

pipe_number : int The specific data pipe number in range [0, 5] to concerning the static payload
length feature. If this parameter is not in range [0, 5], then a IndexError exception is thrown.
If this parameter is not specified, then the data returned is about data pipe 0.

New in version 2.0.0.

6.2. payload_length 53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError


nRF24L01 Library Documentation, Release 2.1.0

6.3 auto_ack

Important: This attribute mostly relates to RX operations, but data pipe 0 applies to TX operations also.

• This attribute will intuitively disable the acknowledgement payload feature (ack attribute) when the automatic
acknowledgement feature is disabled for data pipe 0.

• When entering in TX mode, the listen attribute will ensure data pipe 0 is open to receive automatic acknowl-
edgments for outgoing transmissions.

• Be sure to configure this attribute for data pipe 0 before calling open_tx_pipe() because the RX address for
pipe 0 needs to be overwritten for automatic acknowledgments to be received in TX mode. The listen attribute
will re-write the RX address for data pipe 0 when entering RX mode if needed.

RF24.auto_ack
This int attribute is the automatic acknowledgment feature for any/all pipes.

Default setting is enabled on all data pipes. A valid input is:

• A bool to enable (True) or disable (False) transmitting automatic acknowledgment packets for all data
pipes.

• A list or tuple containing booleans or integers can be used control this feature per data pipe. Index 0
controls this feature on data pipe 0. Indices greater than 5 will be ignored since there are only 6 data pipes.
If any index’s value is less than 0 (a negative value), then the pipe corresponding to that index will remain
unaffected.

• An int where each bit in the integer represents the automatic acknowledgement feature per pipe. Bit
position 0 controls this feature for data pipe 0, and bit position 5 controls this feature for data pipe 5. All
bits in positions greater than 5 are ignored.

Note: The CRC (cyclic redundancy checking) is enabled (for all transmissions) automatically by the nRF24L01
if this attribute is enabled for any data pipe (see also crc attribute). The crc attribute will remain unaffected
when disabling this attribute for any data pipes.

Returns An int (1 unsigned byte) where each bit in the integer represents the automatic acknowl-
edgement feature per pipe.

Changed in version 1.2.0: Accepts a list or tuple for control of the automatic acknowledgement feature per pipe.

Changed in version 2.0.0:

• Returns an integer instead of a boolean

• Accepts an integer for binary control of the automatic acknowledgement feature per pipe

RF24.set_auto_ack(enable: bool, pipe_number: int)
Control the auto_ack feature for a specific data pipe.

Parameters

enable : bool The state of the automatic acknowledgement feature about a specified data pipe.

pipe_number : int The specific data pipe number in range [0, 5] to apply the enable parameter.
If this parameter is not specified the enable parameter is applied to all data pipes. If this
parameter is not in range [0, 5], then a IndexError exception is thrown.

New in version 2.0.0.

54 Chapter 6. Configurable RF24 API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError


nRF24L01 Library Documentation, Release 2.1.0

RF24.get_auto_ack(pipe_number: int)→ bool
Returns a bool describing the auto_ack feature about a data pipe.

Parameters

pipe_number : int The specific data pipe number in range [0, 5] concerning the setting for
the automatic acknowledgment feature. If this parameter is not in range [0, 5], then a
IndexError exception is thrown. If this parameter is not specified, then the data returned is
about data pipe 0.

New in version 2.0.0.

6.4 Auto-Retry feature

RF24.arc
This int attribute specifies the number of attempts to re-transmit TX payload when ACK packet is not received.

The auto_ack attribute must be enabled on the receiving nRF24L01’s pipe 0 & the RX data pipe and the
transmitting nRF24L01’s pipe 0 to properly use this attribute. If auto_ack is disabled on the transmitting
nRF24L01’s pipe 0, then this attribute is ignored when calling send().

A valid input value will be clamped to range [0, 15]. Default is set to 15. A value of 0 disables the automatic
re-transmit feature, but the sending nRF24L01 will still wait the number of microseconds specified by ard for
an Acknowledgement (ACK) packet response (assuming auto_ack is enabled).

Changed in version 2.0.0: Invalid input values are clamped to proper range instead of throwing a ValueError
exception.

Changed in version 2.2.0: Default value changed from 3 to the maximum 15. This only affects performance in
scenarios that experience unreliable reception.

RF24.ard
This int attribute specifies the delay (in microseconds) between attempts to automatically re-transmit the TX
payload when no ACK packet is received.

During this time, the nRF24L01 is listening for the ACK packet. If the auto_ack attribute is disabled for pipe
0, then this attribute is not applied.

A valid input value will be clamped to range [250, 4000]. Default is 1500 for reliability. If this is set to a value
that is not multiple of 250, then the highest multiple of 250 that is no greater than the input value is used.

Note: Paraphrased from nRF24L01 specifications sheet:

Please take care when setting this parameter. If the custom ACK payload is more than 15 bytes in 2 Mbps data
rate, the ard must be 500µS or more. If the custom ACK payload is more than 5 bytes in 1 Mbps data rate, the
ard must be 500µS or more. In 250kbps data rate (even when there is no custom ACK payload) the ard must
be 500µS or more.

See data_rate attribute on how to set the data rate of the nRF24L01’s transmissions.

Changed in version 2.0.0: Invalid input values are clamped to proper range instead of throwing a ValueError
exception.

RF24.set_auto_retries(delay: int, count: int)
set the ard & arc attributes with 1 function.

Parameters

delay : int accepts the same input as the ard attribute.

6.4. Auto-Retry feature 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

count : int accepts the same input as the arc attribute.

RF24.get_auto_retries()→ tuple
get the ard & arc attributes with 1 function.

Return A tuple containing 2 items; index 0 will be the ard attribute, and index 1 will be the arc
attribute.

56 Chapter 6. Configurable RF24 API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple


CHAPTER

SEVEN

BLE API

New in version 1.2.0: BLE API added

7.1 BLE Limitations

This module uses the RF24 class to make the nRF24L01 imitate a Bluetooth-Low-Emissions (BLE) beacon. A BLE
beacon can send data (referred to as advertisements) to any BLE compatible device (ie smart devices with Bluetooth
4.0 or later) that is listening.

Original research was done by Dmitry Grinberg and his write-up (including C source code) can be found here As this
technique can prove invaluable in certain project designs, the code here has been adapted to work with CircuitPython.

Important: Because the nRF24L01 wasn’t designed for BLE advertising, it has some limitations that helps to be
aware of.

1. The maximum payload length is shortened to 18 bytes (when not broadcasting a device name nor the nRF24L01
show_pa_level). This is calculated as:

32 (nRF24L01 maximum) - 6 (MAC address) - 5 (required flags) - 3 (CRC checksum) = 18

Use the helper function len_available() to detirmine if your payload can be transmit.

2. the channels that BLE use are limited to the following three: 2.402 GHz, 2.426 GHz, and 2.480 GHz. We have
provided a tuple of these specific channels for convenience (See BLE_FREQ and hop_channel()).

3. crc is disabled in the nRF24L01 firmware because BLE specifications require 3 bytes (crc24_ble()), and the
nRF24L01 firmware can only handle a maximum of 2. Thus, we have appended the required 3 bytes of CRC24
into the payload.

4. address_length of BLE packet only uses 4 bytes, so we have set that accordingly.

5. The auto_ack (automatic acknowledgment) feature of the nRF24L01 is useless when tranmitting to BLE de-
vices, thus it is disabled as well as automatic re-transmit (arc) and custom ACK payloads (ack) features which
both depend on the automatic acknowledgments feature.

6. The dynamic_payloads feature of the nRF24L01 isn’t compatible with BLE specifications. Thus, we have
disabled it.

7. BLE specifications only allow using 1 Mbps RF data_rate, so that too has been hard coded.

8. Only the “on data sent” (irq_ds) & “on data ready” (irq_dr) events will have an effect on the interrupt (IRQ)
pin. The “on data fail” (irq_df ) is never triggered because auto_ack attribute is disabled.

57

http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery


nRF24L01 Library Documentation, Release 2.1.0

7.2 fake_ble module helpers

circuitpython_nrf24l01.fake_ble.swap_bits(original)
This function reverses the bit order for a single byte.

Returns An int containing the byte whose bits are reversed compared to the value passed to the
original parameter.

Parameters

original : int This is truncated to a single unsigned byte, meaning this parameter’s value can
only range from 0 to 255.

circuitpython_nrf24l01.fake_ble.reverse_bits(original)
This function reverses the bit order for an entire buffer protocol object.

Returns A bytearray whose byte order remains the same, but each byte’s bit order is reversed.

Parameters

original : bytearray,bytes The original buffer whose bits are to be reversed.

circuitpython_nrf24l01.fake_ble.chunk(buf, data_type=22)
This function is used to pack data values into a block of data that make up part of the BLE payload per Bluetooth
Core Specifications.

Parameters

buf : bytearray,bytes The actual data contained in the block.

data_type : int The type of data contained in the chunk. This is a predefined number according
to BLE specifications. The default value 0x16 describes all service data. 0xFF describes
manufacturer information. Any other values are not applicable to BLE advertisements.

Important: This function is called internally by advertise(). To pack multiple data values into a single
payload, use this function for each data value and pass a list or tuple of the returned results to advertise()
(see example code in documentation about advertise() for more detail). Remember that broadcasting multiple
data values may require the name be set to None and/or the show_pa_level be set to False for reasons about
the payload size with BLE Limitations.

circuitpython_nrf24l01.fake_ble.crc24_ble(data, deg_poly=1627, init_val=5592405)
This function calculates a checksum of various sized buffers.

This is exposed for convenience and should not be used for other buffer protocols that require big endian CRC24
format.

Parameters

data : bytearray,bytes The buffer of data to be uncorrupted.

deg_poly : int A preset “degree polynomial” in which each bit represents a degree who’s co-
efficient is 1. BLE specfications require 0x00065b (default value).

init_val : int This will be the initial value that the checksum will use while shifting in the
buffer data. BLE specfications require 0x555555 (default value).

Returns A 24-bit bytearray representing the checksum of the data (in proper little endian).

circuitpython_nrf24l01.fake_ble.whitener(buf, coef )
Whiten and dewhiten data according to the given coefficient.

58 Chapter 7. BLE API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray


nRF24L01 Library Documentation, Release 2.1.0

This is a helper function to FakeBLE.whiten(). It has been broken out of the FakeBLE class to allow whitening
and dewhitening a BLE payload without the hardcoded coefficient.

Parameters

data : bytes,bytearray The BLE payloads data. This data should include the CRC24 checksum.

coef : int

The whitening coefficient used to avoid repeating binary patterns. This is the index of
BLE_FREQ tuple for nRF24L01 channel that the payload transits (plus 37).

coef = None # placeholder for the coefficient
rx_channel = nrf.channel
for index, chl in enumerate(BLE_FREQ):

if chl == rx_channel:
coef = index + 37
break

Note: If currently used nRF24L01 channel is different from the channel in which the payload
was received, then set this parameter accordingly.

circuitpython_nrf24l01.fake_ble.BLE_FREQ = (2, 26, 80)
The BLE channel number is different from the nRF channel number.

This tuple contains the relative predefined channels used:

nRF24L01 channel BLE channel
2 37
26 38
80 39

7.3 QueueElement class

New in version 2.1.0: This class was added when implementing BLE signal sniffing.

class circuitpython_nrf24l01.fake_ble.QueueElement(buffer)
A data structure used for storing received & decoded BLE payloads in the rx_queue.

Parameters

buffer : bytes,bytearray the validated BLE payload (not including the CRC checksum). The
buffer passed here is decoded into this class’s properties.

mac
The transmitting BLE device’s MAC address as a bytes object.

name
The transmitting BLE device’s name. This will be a str, bytes object (if a UnicodeError was caught),
or None (if not included in the received payload).

pa_level
The transmitting device’s PA Level (if included in the received payload) as an int.

7.3. QueueElement class 59

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#UnicodeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

Note: This value does not represent the received signal strength. The nRF24L01 will receive anything
over a -64 dbm threshold.

data
A list of the transmitting device’s data structures (if any). If an element in this list is not an instance (or
descendant) of the ServiceData class, then it is likely a custom, user-defined, or unsupported specification
- in which case it will be a bytearray object.

7.4 FakeBLE class

class circuitpython_nrf24l01.fake_ble.FakeBLE(spi, csn, ce_pin, spi_frequency=10000000)
Bases: circuitpython_nrf24l01.rf24.RF24

A class to implement BLE advertisements using the nRF24L01.

Per the limitations of this technique, only some of underlying RF24 functionality is available for configuration
when implementing BLE transmissions. See the Unavailable RF24 functionality for more details.

See also:

For all parameters’ descriptions, see the RF24 class’ contructor documentation.

FakeBLE.mac
This attribute returns a 6-byte buffer that is used as the arbitrary mac address of the BLE device being emulated.

You can set this attribute using a 6-byte int or bytearray. If this is set to None, then a random 6-byte address
is generated.

FakeBLE.name
The broadcasted BLE name of the nRF24L01.

This is not required. In fact, setting this attribute will subtract from the available payload length (in bytes). Set
this attribute to None to disable advertising the device name.

Valid inputs are str, bytes, bytearray, or None. A str will be converted to a bytes object automatically.

Note: This information occupies (in the TX FIFO) an extra 2 bytes plus the length of the name set by this
attribute.

Changed in version 2.2.0: This attribute can also be set with a str, but it must be UTF-8 compatible.

FakeBLE.show_pa_level
If this attribute is True, the payload will automatically include the nRF24L01’s pa_level in the advertisement.

The default value of False will exclude this optional information.

Note: This information occupies (in the TX FIFO) an extra 3 bytes, and is really only useful for some applications
to calculate proximity to the nRF24L01 transceiver.

FakeBLE.channel
This int attribute specifies the nRF24L01’s frequency.

The only allowed channels are those contained in the BLE_FREQ tuple.

60 Chapter 7. BLE API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

Changed in version 2.1.0: Any invalid input value (that is not found in BLE_FREQ ) had raised a ValueError
exception. This behavior changed to ignoring invalid input values, and the exception is no longer raised.

FakeBLE.hop_channel()
Trigger an automatic change of BLE compliant channels.

FakeBLE.whiten(data)→ bytearray
Whitening the BLE packet data ensures there’s no long repetition of bits.

This is done according to BLE specifications.

Parameters

data : bytearray,bytes The packet to whiten.

Returns A bytearray of the data with the whitening algorythm applied.

Note: advertise() and available() uses this function internally to prevent improper usage.

Warning: This function uses the currently set BLE channel as a base case for the whitening coefficient.

Do not call hop_channel() before calling available() because this function needs to know the correct
BLE channel to properly de-whiten received payloads.

FakeBLE.len_available(hypothetical=b'')→ int
This function will calculates how much length (in bytes) is available in the next payload.

This is detirmined from the current state of name and show_pa_level attributes.

Parameters

hypothetical : bytearray,bytes Pass a potential chunk() of data to this parameter to calcu-
late the resulting left over length in bytes. This parameter is optional.

Returns An int representing the length of available bytes for a single payload.

Changed in version 2.0.0: The name of this function changed from “available” to “len_available” to avoid con-
fusion with circuitpython_nrf24l01.rf24.RF24.available(). This change also allows providing the
underlying RF24 class’ available() method in the FakeBLE API.

FakeBLE.advertise(buf=b'', data_type: int = 255)
This blocking function is used to broadcast a payload.

Returns Nothing as every transmission will register as a success under the required settings for BLE
beacons.

Parameters

buf : bytearray The payload to transmit. This bytearray must have a length greater than 0 and
less than 22 bytes Otherwise a ValueError exception is thrown whose prompt will tell you
the maximum length allowed under the current configuration. This can also be a list or tuple
of payloads (bytearray); in which case, all items in the list/tuple are processed are packed
into 1 payload for a single transmissions. See example code below about passing a list or
tuple to this parameter.

data_type : int This is used to describe the buffer data passed to the buf parameter. 0x16
describes all service data. The default value 0xFF describes manufacturer information. This
parameter is ignored when a tuple or list is passed to the buf parameter. Any other values
are not applicable to BLE advertisements.

7.4. FakeBLE class 61

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list


nRF24L01 Library Documentation, Release 2.1.0

Important: If the name and/or TX power level of the emulated BLE device is also to be broadcast, then the
name and/or show_pa_level attribute(s) should be set prior to calling advertise().

To pass multiple data values to the buf parameter see the following code as an example:

# let UUIDs be the 16-bit identifier that corresponds to the
# BLE service type. The following values are not compatible with
# BLE advertisements.
UUID_1 = 0x1805
UUID_2 = 0x1806
service1 = ServiceData(UUID_1)
service2 = ServiceData(UUID_2)
service1.data = b"some value 1"
service2.data = b"some value 2"

# make a tuple of the buffers
buffers = (

chunk(service1.buffer),
chunk(service2.buffer)

)

# let `ble` be the instantiated object of the FakeBLE class
ble.advertise(buffers)
ble.hop_channel()

FakeBLE.available()→ bool
A bool describing if there is a payload in the rx_queue.

This method will take the first available data from the radio’s RX FIFO and validate the payload using the 24bit
CRC checksum at the end of the payload. If the payload is indeed a valid BLE transmission that fit within the
32 bytes that the nRF24L01 can capture, then this method will decipher the data within the payload and enqueue
the resulting QueueElement in the rx_queue.

Tip: Use read() to fetch the decoded data.

Returns

• True if payload was received and validated

• False if no payload was received or the received payload could not be deciphered.

Changed in version 2.1.0: This was an added override to validate & decipher received BLE data.

FakeBLE.rx_queue
The internal queue of received BLE payloads’ data.

Each Element in this queue is a QueueElement object whose members are set according to the its internal
decoding algorithm. The read() function will remove & return the first element in this queue.

Hint: This attribute is exposed for debugging purposes, but it can also be used by applications.

New in version 2.1.0.

62 Chapter 7. BLE API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

FakeBLE.rx_cache
The internal cache used when validating received BLE payloads.

This attribute is only used by available() to cache the data from the top level of the radio’s RX FIFO then
validate & decode it.

Hint: This attribute is exposed for debugging purposes.

New in version 2.1.0.

FakeBLE.read()→ circuitpython_nrf24l01.fake_ble.QueueElement
Get the First Out element from the queue.

Returns

• None if nothing is the internal rx_queue

• A QueueElement object from the front of the rx_queue (like a FIFO buffer)

Changed in version 2.1.0: This was an added override to fetch deciphered BLE data from the rx_queue.

FakeBLE.interrupt_config(data_recv: bool = True, data_sent: bool = True, data_fail: bool = True)
Sets the configuration of the nRF24L01’s IRQ pin. (write-only)

Warning: The irq_df attribute is not implemented for BLE operations.

See also:

interrupt_config()

7.4.1 Unavailable RF24 functionality

The following RF24 functionality is not available in FakeBLE objects:

• dynamic_payloads

• set_dynamic_payloads()

• data_rate

• address_length

• auto_ack

• set_auto_ack()

• ack

• crc

• open_rx_pipe()

• open_tx_pipe()

7.4. FakeBLE class 63

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


nRF24L01 Library Documentation, Release 2.1.0

7.5 Service related classes

7.5.1 Abstract Parent

class circuitpython_nrf24l01.fake_ble.ServiceData(uuid)
An abstract helper class to package specific service data using Bluetooth SIG defined 16-bit UUID flags to
describe the data type.

Parameters

uuid : int The 16-bit UUID “GATT Service assigned number” defined by the Bluetooth SIG to
describe the service data. This parameter is required.

property uuid: bytes
This returns the 16-bit Service UUID as a bytearray in little endian. (read-only)

property data: bytes
This attribute is a bytearray or bytes object.

property buffer: bytes
Get the representation of the instantiated object as an immutable bytes object (read-only).

__len__()→ int
For convenience, this class is compatible with python’s builtin len() method. In this context, this will
return the length of the object (in bytes) as it would appear in the advertisement payload.

__repr__()→ str
For convenience, this class is compatible with python’s builtin repr() method. In this context, it will
return a string of data with applicable suffixed units.

7.5.2 Service data UUID numbers

These are the 16-bit UUID numbers used by the Derivitive Children of the ServiceData class

circuitpython_nrf24l01.fake_ble.TEMPERATURE_UUID = 0x1809
The Temperature Service UUID number

circuitpython_nrf24l01.fake_ble.BATTERY_UUID = 0x180F
The Battery Service UUID number

circuitpython_nrf24l01.fake_ble.EDDYSTONE_UUID = 0xFEAA
The Eddystone Service UUID number

7.5.3 Derivitive Children

class circuitpython_nrf24l01.fake_ble.TemperatureServiceData
Bases: circuitpython_nrf24l01.fake_ble.ServiceData

This derivitive of the ServiceData class can be used to represent temperature data values as a float value.

See also:

Bluetooth Health Thermometer Measurement format as defined in the GATT Specifications Supplement.

property data: float
This attribute is a float value.

64 Chapter 7. BLE API

https://docs.python.org/3/library/functions.html#int
https://specificationrefs.bluetooth.com/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf#page=19
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#repr
ble_api.html#derivitive-children
https://docs.python.org/3/library/functions.html#float
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=502132&vId=542989
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


nRF24L01 Library Documentation, Release 2.1.0

class circuitpython_nrf24l01.fake_ble.BatteryServiceData
Bases: circuitpython_nrf24l01.fake_ble.ServiceData

This derivitive of the ServiceData class can be used to represent battery charge percentage as a 1-byte value.

See also:

The Bluetooth Battery Level format as defined in the GATT Specifications Supplement.

property data: int
The attribute is a 1-byte unsigned int value.

class circuitpython_nrf24l01.fake_ble.UrlServiceData
Bases: circuitpython_nrf24l01.fake_ble.ServiceData

This derivitive of the ServiceData class can be used to represent URL data as a bytes value.

See also:

Google’s Eddystone-URL specifications.

property pa_level_at_1_meter: int
The TX power level (in dBm) at 1 meter from the nRF24L01. This defaults to -25 (due to testing when
broadcasting with 0 dBm) and must be a 1-byte signed int.

property data: str
This attribute is a str of URL data.

7.5. Service related classes 65

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=502132&vId=542989
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://github.com/google/eddystone/tree/master/eddystone-url
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


nRF24L01 Library Documentation, Release 2.1.0

66 Chapter 7. BLE API



CHAPTER

EIGHT

NETWORK TOPOLOGY

8.1 Network Levels

Because of the hardware limitation’s of the nRF24L01 transceiver, each network is arranged in a levels where a parent
can have up to 5 children. And each child can also have up to 5 other children. This is not limitless because this network
is designed for low-memory devices. Consequently, all node’s Logical Address are limited to 12-bit integers and use
an octal counting scheme.

• The master node (designated with the Logical Address 0o0) is always the only node in the lowest level (denoted
as level 0).

• Child nodes are designated by the most significant octal digit in their Logical Address. A child node address’
least significant digits are the inherited address of it’s parent node. Nodes on level 1 only have 1 digit because
they are children of the master node.

67



nRF24L01 Library Documentation, Release 2.1.0

0o0

0o1 0o2 0o3 0o4 0o5

0o14 0o24 0o34 0o44 0o54

0o124 0o224 0o324 0o424 0o524

0o1324 0o2324 0o3324 0o4324 0o5324

Legend

Network Level 0         

Network Level 1         

Network Level 2         

Network Level 3         

Network Level 4         

Nodes are labeled
in octal numbers

Hopefully, you should see the pattern. There can be up to a maximum of 5 network levels (that’s 0-4 ordered from
lowest to highest).

For a message to travel from node 0o124 to node 0o3, it must be passed through any applicable network levels. So,
the message flows 0o124 -> 0o24 -> 0o4 -> 0o0 -> 0o3.

A single network can potentially have a maximum of 781 nodes (all operating on the same channel), but for readability
reasons, the following graph only demonstrates

• the master node (level 0) and it’s 5 children (level 1)

• level 2 only shows the 1st and 2nd children of parents on level 1

• level 3 only shows the 3rd and 4th children of parents on level 2

• level 4 only shows the 5th children of parents on level 3

68 Chapter 8. Network Topology



nRF24L01 Library Documentation, Release 2.1.0

0o0

0o1

0o2

0o3

0o4

0o5

0o11

0o21

0o12

0o22

0o13

0o23

0o14

0o24

0o15

0o25

0o311

0o411

0o321

0o421
0o3120o412

0o322

0o422

0o313

0o413

0o323

0o423

0o314

0o414
0o324 0o424

0o315

0o415

0o325

0o425

0o5311

0o5411

0o5321

0o5421

0o53120o5412

0o5322

0o5422

0o5313

0o5413

0o5323

0o5423

0o5314

0o5414

0o5324 0o5424

0o5315

0o5415

0o5325

0o5425

8.2 Physical addresses vs Logical addresses

• The Physical address is the 5-byte address assigned to the radio’s data pipes.

• The Logical address is the 12-bit integer representing a network node. The Logical address uses an octal counting
scheme. A valid Logical Address must only contain octal digits in range [1, 5]. The master node is the exception
for it uses the number 0

Tip: Use the is_address_valid() function to programatically check a Logical Address for validity.

Note: Remember that the nRF24L01 only has 6 data pipes for which to receive or transmit. Since only data pipe 0 can
be used to transmit, the other other data pipes 1-5 are devoted to receiving transmissions from other network nodes;
data pipe 0 also receives multicasted messages about the node’s network level).

8.2. Physical addresses vs Logical addresses 69



nRF24L01 Library Documentation, Release 2.1.0

8.2.1 Translating Logical to Physical

Before translating the Logical address, a single byte is used reptitively as the base case for all bytes of any Physical
Address. This byte is the address_prefix attribute (stored as a mutable bytearray) in the RF24Network class. By
default the address_prefix has a single byte value of b"\xCC".

The RF24Network class also has a predefined list of bytes used for translating unique Logical addresses into unique
Physical addresses. This list is called address_suffix (also stored as a mutable bytearray). By default the
address_suffix has 6-byte value of b"\xC3\x3C\x33\xCE\x3E\xE3" where the order of bytes pertains to the
data pipe number and child node’s most significant byte in its Physical Address.

For example: The Logical Address of the network’s master node is 0. The radio’s pipes 1-5 start with the
address_prefix. To make each pipe’s Phsyical address unique to a child node’s Physical address, the
address_suffix is used.

The Logical address of the master node: 0o0

pipe Phsyical Address (hexadecimal)
1 CC CC CC CC 3C
2 CC CC CC CC 33
3 CC CC CC CC CE
4 CC CC CC CC 3E
5 CC CC CC CC E3

The Logical address of the master node’s first child: 0o1

pipe Phsyical Address (hexadecimal)
1 CC CC CC 3C 3C
2 CC CC CC 3C 33
3 CC CC CC 3C CE
4 CC CC CC 3C 3E
5 CC CC CC 3C E3

The Logical address of the master node’s second child: 0o2

pipe Phsyical Address (hexadecimal)
1 CC CC CC 33 3C
2 CC CC CC 33 33
3 CC CC CC 33 CE
4 CC CC CC 33 3E
5 CC CC CC 33 E3

The Logical address of the master node’s third child’s second child’s first child: 0o123

pipe Phsyical Address (hexadecimal)
1 CC 3C 33 CE 3C
2 CC 3C 33 CE 33
3 CC 3C 33 CE CE
4 CC 3C 33 CE 3E
5 CC 3C 33 CE E3

70 Chapter 8. Network Topology

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray


nRF24L01 Library Documentation, Release 2.1.0

8.2.2 Two networks coexisting on the same channel

Warning: The following section is an advanced tutorial. The default values for address_prefix and
address_suffix were carefully chosen by TMRh20 to demonstrate best practices in terms of choosing a data
pipe’s address for transmissions. Bad practices can be avoided by heeding ManiacBug’s advice in his detailed blog
post about the topic.

In theory, the address_prefix and address_suffix attributes could be changed to allow 2 separate networks to
coexist on the same channel. The following are example code snippets to use as a template for such a scenario.

Listing 1: Master node for network_a

from circuitpython_nrf24l01.rf24_network import RF24Network

# ... declare SPI_BUS, CE_PIN, and CSN_PIN objects
network_a_master = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 0)

# let network_a use the default values for address_prefix and address_suffix

while True:
network_a_master.update()
if network_a_master.available():

recv_frame = network_a_master.read()
print(

"received {}: {}".format(
recv_frame.header.to_string(), recv_frame.message.decode()

)
)

# emit frames as needed

Listing 2: Master node for network_b

from circuitpython_nrf24l01.rf24_network import RF24Network

# ... declare SPI_BUS, CE_PIN, and CSN_PIN objects
network_b_master = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 0)

# let network_b use different values for address_prefix and address_suffix
network_b_master.address_prefix = bytearray([0xDB])
network_b_master.address_suffix = bytearray([0xDD, 0x99, 0xB6, 0xD9, 0x9D, 0x66])

# re-assign the node_address for the different physical addresses to be used
network_b_master.node_address = 0

while True:
network_b_master.update()
if network_b_master.available():

recv_frame = network_b_master.read()
print(

"received {}: {}".format(
recv_frame.header.to_string(), recv_frame.message.decode()

(continues on next page)

8.2. Physical addresses vs Logical addresses 71

http://maniacalbits.blogspot.com/2013/04/rf24-addressing-nrf24l01-radios-require.html
http://maniacalbits.blogspot.com/2013/04/rf24-addressing-nrf24l01-radios-require.html


nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

)
)

# emit frames as needed

Listing 3: A single network node for hoping between network_a &
network_b

from circuitpython_nrf24l01.rf24_network import RF24Network

# ... declare SPI_BUS, CE_PIN, and CSN_PIN objects
network_b_node = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 5)
network_a_node = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 1)

# let network_b use different values for address_prefix and address_suffix
with network_b_node as net_b:

net_b.address_prefix = bytearray([0xDB])
net_b.address_suffix = bytearray([0xDD, 0x99, 0xB6, 0xD9, 0x9D, 0x66])

# re-assign the node_address for the different physical addresses to be used
net_b.node_address = 5

while True:
# do something with network_a
with network_a_node as net_a:

net_a.update()
net_a.send(RF24NetworkHeader(0, "T"), b"data for net A master")

# do something with network_b
with network_b_node as net_b:

net_b.update()
net_b.send(RF24NetworkHeader(0, "T"), b"data for net B master")

72 Chapter 8. Network Topology



CHAPTER

NINE

NETWORK DATA STRUCTURES

New in version 2.1.0.

These classes are used to structure the payload data for wireless network transactions.

9.1 Header

class circuitpython_nrf24l01.network.structs.RF24NetworkHeader(to_node: Optional[int] = None,
message_type=None)

The header information used for routing network messages.

Parameters

to_node : int The Logical Address designating the message’s destination.

message_type : int,str A 1-byte int representing the message_type. If a str is passed, then
the first character’s numeric ASCII representation is used.

Note: These parameters can be left unspecified to create a blank object that can be augmented after instantiation.

RF24NetworkHeader.to_node
This value is truncated to a 2-byte unsigned int.

Describes the message destination using a Logical Address.

RF24NetworkHeader.from_node
This value is truncated to a 2-byte unsigned int.

Describes the message origin using a Logical Address.

RF24NetworkHeader.message_type
The type of message.

This int must be less than 256. When set using a str, this attribute’s int value is derived from the ASCII
number of the string’s first character (see ord()). Non-ASCII characters’ values are truncated to 1 byte (see
str.isascii()). A blank str sets this attribute’s value to 0.

Hint: Users are encouraged to specify a number in range [0, 127] (basically less than or equal to
MAX_USR_DEF_MSG_TYPE) as there are Reserved Message Types.

RF24NetworkHeader.frame_id
This value is truncated to a 2-byte unsigned int.

73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/stdtypes.html#str.isascii
https://docs.python.org/3/library/stdtypes.html#str
constants.html#reserved-network-message-types
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

The sequential identifying number for the frame (relative to the originating network node). Each sequential
frame’s ID is incremented, but frames containing fragmented messages have the same ID number.

RF24NetworkHeader.reserved
A single byte reserved for network usage.

This will be the sequential ID number for fragmented messages, but on the last message fragment, this will be
the message_type. RF24Mesh will also use this attribute to hold a newly assigned network Logical Address for
MESH_ADDR_RESPONSE messages.

RF24NetworkHeader.unpack(buffer)→ bool
Decode header data from the first 8 bytes of a frame’s buffer.

This function is meant for library internal usage.

Parameters

buffer : bytes,bytearray The buffer to unpack. All resulting data is stored in the objects at-
tributes accordingly.

Returns True if successful; otherwise False.

RF24NetworkHeader.pack()→ bytes
This function is meant for library internal usage.

Returns The entire header as a bytes object.

RF24NetworkHeader.to_string()→ str

Returns A str describing all of the header’s attributes.

9.2 Frame

class circuitpython_nrf24l01.network.structs.RF24NetworkFrame(header: Op-
tional[circuitpython_nrf24l01.network.structs.RF24NetworkHeader]
= None, message=None)

Structure of a single frame.

This is used for either a single fragment of an individually large message (greater than 24 bytes) or a single
message that is less than 25 bytes.

Parameters

header : RF24NetworkHeader The header describing the frame’s message.

message : bytes,bytearray The actual message containing the payload or a fragment of a pay-
load.

Note: These parameters can be left unspecified to create a blank object that can be augmented after instantiation.

RF24NetworkFrame.header
The RF24NetworkHeader about the frame’s message.

RF24NetworkFrame.message
The entire message or a fragment of a message allocated to the frame.

This attribute is typically a bytearray or bytes object.

74 Chapter 9. Network Data Structures

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes


nRF24L01 Library Documentation, Release 2.1.0

RF24NetworkFrame.unpack(buffer)→ bool
Decode the header & message from a buffer.

This function is meant for library internal usage.

Parameters

buffer : bytes,bytearray The buffer to unpack. All resulting data is stored in the objects at-
tributes accordingly.

Returns True if successful; otherwise False.

RF24NetworkFrame.pack()→ bytes
This attribute is meant for library internal usage.

Returns The entire object as a bytes object.

RF24NetworkFrame.is_ack_type()→ bool
Check if the frame is to expect a NETWORK_ACK message.

This function is meant for library internal usage.

9.3 FrameQueue

class circuitpython_nrf24l01.network.structs.FrameQueue(queue=None)
A class that wraps a list with RF24Network Queue behavior.

Parameters

queue : FrameQueue,FrameQueueFrag To move (not copy) the contents of another
FrameQueue based object, you can pass the object to this parameter. Doing so will also
copy the object’s max_queue_size attribute.

FrameQueue.max_queue_size
The maximum number of frames that can be enqueued at once. Defaults to 6.

FrameQueue.enqueue(frame: circuitpython_nrf24l01.network.structs.RF24NetworkFrame)→ bool
Add a RF24NetworkFrame to the queue.

Returns True if the frame was added to the queue, or False if it was not.

FrameQueue.dequeue()→ circuitpython_nrf24l01.network.structs.RF24NetworkFrame

Returns The First Out element and removes it from the queue.

FrameQueue.peek()→ circuitpython_nrf24l01.network.structs.RF24NetworkFrame

Returns The First Out element without removing it from the queue.

FrameQueue.__len__()→ int

Returns The number of the enqueued frames.

For use with Python’s builtin len().

9.3. FrameQueue 75

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#len


nRF24L01 Library Documentation, Release 2.1.0

9.4 FrameQueueFrag

class circuitpython_nrf24l01.network.structs.FrameQueueFrag(queue=None)
Bases: circuitpython_nrf24l01.network.structs.FrameQueue

A specialized FrameQueue with an additional cache for fragmented frames.

Note: This class will only cache 1 fragmented message at a time. If parts of the fragmented message are missing
(or duplicate fragments are received), then the fragment is discarded. If a new fragmented message is received
(before a previous fragmented message is completed and reassembled), then the cache is reused for the new
fragmented message to avoid memory leaks.

9.5 Logical Address Validation

structs.is_address_valid()→ bool
Test if a given address is a valid Logical Address.

Parameters

address : int The Logical Address to validate.

Returns True if the given address can be used as a node_address or to_node destination. Other-
wise, this function returns False.

Warning: Please note that this function also allows the value 0o100 to validate because it
is used as the NETWORK_MULTICAST_ADDR for multicasted messages. Technically, 0o100 is
an invalid address.

76 Chapter 9. Network Data Structures

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


CHAPTER

TEN

SHARED NETWORKING API

10.1 Order of Inheritence

  circuitpython_nrf24l01.rf24  

                                circuitpython_nrf24l01.network.mixins  

  circuitpython_nrf24l01.rf24_network    circuitpython_nrf24l01.rf24_mesh  

RF24

RadioMixin NetworkMixin

RF24NetworkRoutingOnly RF24MeshNoMaster

RF24Network RF24Mesh

The RadioMixin and NetworkMixin classes are not documented directly. Instead, this documentation follows the OSI
(Open Systems Interconnection) model. This is done to mimic how the TMRh20 C++ libraries and documentation are
structured.

Consequentially, all functions and members inherited from the NetworkMixin class are documented here as part of
the RF24Network class. Note that the RF24MeshNoMaster, RF24Mesh , and RF24NetworkRoutingOnly classes all
share the same API inherited from the NetworkMixin class.

77



nRF24L01 Library Documentation, Release 2.1.0

10.2 Accessible RF24 API

The purpose of the RadioMixin class is

1. to provide a networking layer its own instantiated RF24 object

2. to prevent applications from changing the radio’s configuration in a way that breaks the networking layer’s be-
havior

The following list of RF24 functions and attributes are exposed in the RF24Network API and RF24Mesh API.

• channel

• flush_rx()

• flush_tx()

• fifo()

• power

• set_dynamic_payloads()

• get_dynamic_payloads()

• listen

• pa_level

• is_lna_enabled

• data_rate

• crc

• set_auto_retries()

• get_auto_retries()

• last_tx_arc

• address()

• interrupt_config()

• print_pipes()

• print_details()

For the print_details() function, an additional keyword parameter named network_only can be used to
filter out all the core details from the RF24 object. The dump_pipes parameter still exists and defaults to False.
Usage is as follows:

>>> # following command is the same as `nrf.print_details(0, 1)`
>>> nrf.print_details(dump_pipes=False, network_only=True)
Network frame_buf contents:

Header is from 0o7777 to 0o0 type 0 id 1 reserved 0. Message contains:
an empty buffer

Return on system messages__False
Allow network multicasts___True
Multicast relay____________Disabled
Network fragmentation______Enabled
Network max message length_144 bytes
Network TX timeout_________25 milliseconds

(continues on next page)

78 Chapter 10. Shared Networking API

network_api.html
mesh_api.html
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

(continued from previous page)

Network Rounting timeout___75 milliseconds
Network node address_______0o0

Note: The address 0o7777 (seen in output above) is an invalid address used as a sentinel when frame is unpop-
ulated with a proper from_node address.

10.3 External Systems API

The following attributes are exposed in the RF24Network and RF24Mesh API for extensibility via external applications
or systems.

RF24Network.address_prefix = b"\xCC"
The base case for all pipes’ address’ bytes before mutating with address_suffix.

See also:

The usage of this attribute is more explained in the Topology page

RF24Network.address_suffix = b"\xC3\x3C\x33\xCE\x3E\xE3"
Each byte in this bytearray corresponds to the unique byte per pipe and child node.

See also:

The usage of this attribute is more explained in the Topology page

RF24Network.frame_buf
A buffer containing the last frame handled by the network node

RF24Network.queue
The queue (FIFO) of recieved frames for this node

This attribute will be an instantiated FrameQueue or FrameQueueFrag object depending on the state of the
fragmentation attribute.

RF24Network.ret_sys_msg
Force update() to return on system message types.

This bool attribute is asserted on mesh network nodes.

10.3. External Systems API 79

topology.html#physical-addresses-vs-logical-addresses
https://docs.python.org/3/library/stdtypes.html#bytearray
topology.html#physical-addresses-vs-logical-addresses
https://docs.python.org/3/library/functions.html#bool


nRF24L01 Library Documentation, Release 2.1.0

80 Chapter 10. Shared Networking API



CHAPTER

ELEVEN

RF24NETWORK API

New in version 2.1.0.

See also:

Documentation for:

1. Network Topology

2. Shared Networking API

3. Network Data Structures

4. Network Constants

11.1 RF24NetworkRoutingOnly class

class circuitpython_nrf24l01.rf24_network.RF24NetworkRoutingOnly(spi, csn_pin, ce_pin,
node_address,
spi_frequency=10000000)

A minimal Networking implementation for nodes that are meant for strictly routing data amidst a network of
nodes.

This class is a minimal variant of the RF24Network class. The API is almost identical to RF24Network except
that it has no RF24Network.write() or RF24Network.send() functions. This is meant to be the python
equivalent to TMRh20’s DISABLE_USER_PAYLOADS macro in the C++ RF24Network library.

Parameters

node_address : int The octal int for this node’s Logical Address

See also:

For all other parameters’ descriptions, see the RF24 class’ contructor documentation.

11.2 RF24Network class

class circuitpython_nrf24l01.rf24_network.RF24Network(spi, csn_pin, ce_pin, node_address,
spi_frequency=10000000)

Bases: circuitpython_nrf24l01.rf24_network.RF24NetworkRoutingOnly

The object used to instantiate the nRF24L01 as a network node.

Parameters

node_address : int The octal int for this node’s Logical Address

81

topology.html
shared_api.html
structs.html
constants.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

See also:

For all other parameters’ descriptions, see the RF24 class’ contructor documentation.

11.3 Basic API

RF24Network.node_address
get/set the node’s Logical Address for the RF24Network object.

Setting this attribute will alter

1. The Physical Addresses used on the radio’s data pipes

2. The parent attribute

3. The multicast_level attribute’s default value.

Warning:

1. If this attribute is set to an invald network Logical Address, then nothing is done and the invalid address
is ignored.

2. A RF24Mesh object cannot set this attribute because the Logical Address is assigned by the mesh
network’s master node. Therefore, this attribute is read-only for RF24Mesh objects.

See also:

Please review the tip documented in RF24Mesh.node_id for more details.

RF24Network.update()→ int
This function is used to keep the network layer current.

Important: It is imperitive that this function be called at least once during the application’s main loop. For
applications that perform long operations on each iteration of its main loop, it is encouraged to call this function
more than once when possible.

Returns The latest received message’s message_type. The returned value is not gotten from frame’s
in the queue, but rather it is only gotten from the messages handled during the function’s oper-
ation.

RF24Network.available()→ bool

Returns A bool describing if there is a frame waiting in the queue.

RF24Network.peek()→ circuitpython_nrf24l01.network.structs.RF24NetworkFrame
Get (from queue) the next available frame.

Returns A RF24NetworkFrame object. However, the data returned is not removed from the queue.
If there is nothing in the queue, this method will return None.

RF24Network.read()→ circuitpython_nrf24l01.network.structs.RF24NetworkFrame
Get (from queue) the next available frame.

This function differs from peek() because this function also removes the header & message from the queue.

82 Chapter 11. RF24Network API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None


nRF24L01 Library Documentation, Release 2.1.0

Returns A RF24NetworkFrame object. If there is nothing in the queue, this method will return
None.

RF24Network.send(header: circuitpython_nrf24l01.network.structs.RF24NetworkHeader, message)→ bool
Deliver a message according to the header information.

Parameters

header : RF24NetworkHeader The outgoing frame’s header. It is important to have the
header’s to_node attribute set to the target network node’s Logical Address.

message : bytes,bytearray

The outgoing frame’s message.

Note: Be mindful of the message’s size as this cannot exceed MAX_FRAG_SIZE (24 bytes)
if fragmentation is disabled. If fragmentation is enabled (it is by default), then the
message’s size must be less than max_message_length

Returns A bool describing if the message has been transmitted. This does not necessarily describe
if the message has been received at its target destination.

Tip: To ensure a message has been delivered to its target destination, set the frame’s header’s
message_type to an int in range [65, 127]. This will invoke a NETWORK_ACK response message.

11.4 Advanced API

RF24Network.multicast(message, message_type, level: Optional[int] = None)→ bool
Broadcast a message to all nodes on a certain network level.

Parameters

message : bytes,bytearray The outgoing frame’s message.

message_type : str,int The outgoing frame’s message_type.

level : int The network level of nodes to broadcast to. If this optional parameter is not speci-
fied, then the node’s multicast_level is used.

See also:

multicast_level, multicast_relay, and allow_multicast

Returns A bool describing if the message has been transmitted. This does not necessarily describe
if the message has been received at its target destination.

Note: For multicasted messages, the radio’s auto_ack feature is not used.

This function will always return True if a message is directed to a node’s pipe that does not have
auto_ack enabled (which will likely be pipe 0 in most network contexts).

Tip: To ensure a message has been delivered to its target destination, set the header’s

11.4. Advanced API 83

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
topology.html#network-levels
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True


nRF24L01 Library Documentation, Release 2.1.0

message_type to an int in range [65, 127]. This will invoke a NETWORK_ACK response mes-
sage.

RF24Network.write(frame: circuitpython_nrf24l01.network.structs.RF24NetworkFrame, traffic_direct: int = 56)
→ bool

Deliver a network frame.

Hint: This function can be used to transmit entire frames accumulated in a user-defined FrameQueue object.

from circuitpython_nrf24l01.network.structs import FrameQueue, RF24NetworkFrame,␣
→˓RF24NetworkHeader

my_q = FrameQueue()
for i in range(my_q.max_queue_size):

my_q.enqueue(
RF24NetworkFrame(

RF24NetworkHeader(0, "1"), bytes(range(i + 5))
)

)

# when it's time to send the queue
while len(my_q):

# let `nrf` be the instantiated RF24Network object
nrf.write(my_q.dequeue())

Parameters

frame : RF24NetworkFrame The complete frame to send. It is important to have the header’s
to_node attribute set to the target network node’s address.

traffic_direct : int The specified direction of the frame. By default, this will invoke the
automatic routing mechanisms. However, this parameter can be set to a network node’s
Logical Address for direct transmission to the specified node - meaning the transmission’s
automatic routing will begin at the network node that is specified with this parameter instead
of being automatically routed from the actual origin of the transmission.

Returns

• True if the frame has been transmitted. This does not necessarily describe if the message
has been received at its target destination.

• False if the frame has failed to transmit.

Note: This function will always return True if the traffic_direct parameter is set to any-
thing other than its default value. Using the traffic_direct parameter assumes there is a
relaible/open connection to the node_address passed to traffic_direct.

Tip: To ensure a message has been delivered to its target destination, set the frame’s header’s
message_type to an int in range [65, 127]. This will invoke a NETWORK_ACK response message.

84 Chapter 11. RF24Network API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

RF24Network.parent
Get address for the parent node

Returns 0 if called on the network’s master node.

11.5 Configuration API

RF24Network.max_message_length
The maximum length of a frame’s message.

By default this is set to 144. If a network node is driven by the TMRh20 RF24Network library on a ATTiny-based
board, set this to 72 (as per TMRh20’s RF24Network library default behavior).

Configuring the fragmentation attribute will automatically change the value that max_message_length at-
tribute is set to.

RF24Network.fragmentation
Enable/disable (True/False) the message fragmentation feature.

Changing this attribute’s state will also appropriately changes the type of FrameQueue (or FrameQueueFrag)
object used for storing incoming network packets. Disabling fragmentation can save some memory (not as
much as TMRh20’s RF24Network library’s DISABLE_FRAGMENTATIONmacro), but max_message_length will
be limited to 24 bytes (MAX_FRAG_SIZE) maximum. Enabling this attribute will set max_message_length
attribute to 144 bytes.

RF24Network.multicast_relay
Enabling this attribute will automatically forward received multicasted frames to the next highest network level.

Forwarded frames will also be enqueued on the forwarding node as a received frame.

RF24Network.multicast_level
Override the default multicasting network level which is set by the node_address attribute.

Setting this attribute will also change the physical address on the radio’s RX data pipe 0.

See also:

The network levels are explained in more detail on the topology document.

RF24Network.allow_multicast
enable/disable (True/False) multicasting

This attribute affects

• the Physical Address translation (for data pipe 0) when setting the node_address

• all incoming multicasted frames (including multicast_relay behavior).

RF24Network.tx_timeout
The timeout (in milliseconds) to wait for successful transmission.

Defaults to 25.

RF24Network.route_timeout
The timeout (in milliseconds) to wait for transmission’s NETWORK_ACK .

Defaults to 75.

11.5. Configuration API 85

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
topology.html#network-levels
topology.html#network-levels
topology.html
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


nRF24L01 Library Documentation, Release 2.1.0

86 Chapter 11. RF24Network API



CHAPTER

TWELVE

RF24MESH API

New in version 2.1.0.

See also:

Documentation for:

1. Shared Networking API (API common to RF24Mesh and RF24Network)

2. RF24Network API (RF24Mesh inherits from the same mixin class that RF24Network inherits from)

12.1 RF24MeshNoMaster class

class circuitpython_nrf24l01.rf24_mesh.RF24MeshNoMaster(spi, csn_pin, ce_pin, node_id,
spi_frequency=10000000)

A descendant of the same mixin class that RF24Network inherits from. This class adds easy Mesh networking
capability (non-master nodes only).

This class exists to save memory for nodes that don’t behave like mesh network master nodes. It is the python
equivalent to TMRh20’s MESH_NO_MASTER macro in the C++ RF24Mesh library. All the API is the same as
RF24Mesh class.

Parameters

node_id : int The unique identifying node_id number for the instantiated mesh node.

See also:

For all parameters’ descriptions, see the RF24 class’ contructor documentation.

12.2 RF24Mesh class

class circuitpython_nrf24l01.rf24_mesh.RF24Mesh(spi, csn_pin, ce_pin, node_id,
spi_frequency=10000000)

Bases: circuitpython_nrf24l01.rf24_mesh.RF24MeshNoMaster

A descendant of the base class RF24MeshNoMaster that adds algorithms needed for Mesh network master nodes.

Parameters

node_id : int The unique identifying node_id number for the instantiated mesh node.

See also:

For all parameters’ descriptions, see the RF24 class’ contructor documentation.

87

shared_api.html
network_api.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

12.3 Basic API

RF24Mesh.send(to_node: int, message_type, message)→ bool
Send a message to a mesh node_id .

This function will use lookup_address() to fetch the necessary Logical Address to set the frame’s header’s
to_node attribute.

Hint: If you already know the destination node’s Logical Address, then you can use write() for quicker
operation.

Parameters

message : bytes,bytearray

The frame’s message to be transmitted.

Note: Be mindful of the message’s size as this cannot exceed MAX_FRAG_SIZE (24 bytes)
if fragmentation is disabled. If fragmentation is enabled (it is by default), then the
message’s size must be less than max_message_length .

message_type : str,int The int that describes the frame header’s message_type.

to_node_id : int The unique mesh network node_id of the frame’s destination. Defaults to 0
(which is reserved for the master node.

Returns

• True if the frame has been transmitted. This does not necessarily describe if the message
has been received at its target destination.

• False if the frame has not been transmitted.

Tip: To ensure a message has been delivered to its target destination, set the message_type
parameter to an int in range [65, 127]. This will invoke a NETWORK_ACK response message.

RF24Mesh.node_id
The unique ID number (1 byte long) of the mesh network node.

This is not to be confused with the network node’s node_address. This attribute is meant to distinguish different
mesh network nodes that may, at separate instances, use the same node_address. It is up to the developer to
make sure each mesh network node uses a different ID number.

Warning: Changing this attributes value after instantiation will automatically call release_address()
which disconnects the node from the mesh network. Notice the node_address is set to
NETWORK_DEFAULT_ADDR when consciously not connected to the mesh network.

Tip: When a mesh node becomes disconnected from the mesh network, use renew_address() to fetch (from
the master node) an assigned logical address to be used as the mesh node’s node_address.

88 Chapter 12. RF24Mesh API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

RF24Mesh.renew_address(timeout: int = 7.5)
Connect to the mesh network and request a new node_address.

Parameters

timeout : float,int The amount of time (in seconds) to continue trying to connect and get an
assigned Logical Address. Defaults to 7.5 seconds.

Note: This function automatically sets the node_address accordingly.

Returns

• If successful: The node_address that was set to the newly assigned Logical Address.

• If unsuccessful: None, and the node_address attribute will be set to
NETWORK_DEFAULT_ADDR (0o4444 in octal or 2340 in decimal).

12.4 Advanced API

RF24Mesh.lookup_node_id(address: Optional[int] = None)→ int
Convert a node’s Logical Address into its corresponding unique ID number.

Parameters

address : int The Logical Address for which a unique node_id is assigned from network mas-
ter node.

Returns

• The unique node_id assigned to the specified address.

• Error codes include

– -2 means the specified address has not been assigned a unique node_id from
the master node or the requesting network node’s node_address is equal to
NETWORK_DEFAULT_ADDR .

– -1 means the address lookup operation failed due to no network connection or the master
node has not assigned a unique node_id for the specified address.

RF24Mesh.lookup_address(node_id: Optional[int] = None)→ int
Convert a node’s unique ID number into its corresponding Logical Address.

Parameters

node_id : int The unique node_id for which a Logical Address is assigned from network mas-
ter node.

Returns

• The Logical Address assigned to the specified node_id.

• Error codes include

– -2 means the specified node_id has not been assigned a Logical Address from
the master node or the requesting network node’s node_address is equal to
NETWORK_DEFAULT_ADDR .

– -1 means the address lookup operation failed due to no network connection or the master
node has not assigned a Logical Address for the specified node_id.

12.4. Advanced API 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


nRF24L01 Library Documentation, Release 2.1.0

RF24Mesh.write(to_node: int, message_type, message)→ bool
Send a message to a network node_address.

Parameters

to_node_address : int The network node’s Logical Address. of the frame’s destination. This
must be the destination’s network node_address which is not be confused with a mesh
node’s node_id .

message_type : str,int

The int that describes the frame header’s message_type.

Note: Be mindful of the message’s size as this cannot exceed MAX_FRAG_SIZE (24 bytes)
if fragmentation is disabled. If fragmentation is enabled (it is by default), then the
message’s size must be less than max_message_length .

message : bytes,bytearray The frame’s message to be transmitted.

Returns

• True if the frame has been transmitted. This does not necessarily describe if the message
has been received at its target destination.

• False if the frame has not been transmitted.

Tip: To ensure a message has been delivered to its target destination, set the message_type
parameter to an int in range [65, 127]. This will invoke a NETWORK_ACK response message.

RF24Mesh.check_connection()→ bool
Check for network conectivity (not for use on master node).

RF24Mesh.release_address()→ bool
Forces an address lease to expire from the master.

Hint: This should be called from a mesh network node that is disconnecting from the network. This is also
recommended for mesh network nodes that are entering a powered down (or sleep) mode.

RF24Mesh.allow_children
Allow/disallow child node to connect to this network node.

RF24Mesh.block_less_callback
This variable can be assigned a function to perform during long operations.

Note: Requesting a new address (via renew_address()) can take a while since it sequentially attempts to get
re-assigned to the first available Logical Address on the highest possible network level.

The assigned function will be called during renew_address(), lookup_address() and lookup_node_id().

RF24Mesh.dhcp_dict
A dict that enables master nodes to act as a DNS.

This dict stores the assigned Logical Addresses to the connected mesh node’s node_id .

• The keys in this dict are the unique node_id of a mesh network node.

90 Chapter 12. RF24Mesh API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
topology.html#network-levels
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


nRF24L01 Library Documentation, Release 2.1.0

• The values in this dict (corresponding to each key) are the node_address assigned to the node_id .

RF24Mesh.save_dhcp(filename: str = 'dhcp.json')
Save the dhcp_dict to a JSON file (meant for master nodes only).

Warning: This function will likely throw a OSError on boards running CircuitPython firmware because
the file system is by default read-only.

Calling this function on a Linux device (like the Raspberry Pi) will save the dhcp_dict to a JSON file located
in the program’s working directory.

Parameters

filename : str The name of the json file to be used. This value should end in a “.json”

RF24Mesh.load_dhcp(filename: str = 'dhcp.json')
Load the dhcp_dict from a JSON file (meant for master nodes only).

Parameters

filename : str The name of the json file to be used. This value should end in a “.json”

Warning: This function will raise an OSError exception if no file exists.

RF24Mesh.set_address(node_id: int, node_address: int, search_by_address: bool = False)
Set/change a node_id and node_address pair in the dhcp_dict.

This function is only meant to be called on the mesh network’s master node. Use this function to manually assign
a node_id to a RF24Network.node_address.

Parameters

node_id : int A unique identifying number ranging [1, 255].

node_address : int A Logical Address

search_by_address : bool A flag to traverse the dhcp_dict by value instead of by key.

12.4. Advanced API 91

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


nRF24L01 Library Documentation, Release 2.1.0

92 Chapter 12. RF24Mesh API



CHAPTER

THIRTEEN

NETWORK CONSTANTS

New in version 2.1.0.

13.1 Sending Behavior Types

circuitpython_nrf24l01.network.constants.AUTO_ROUTING = 56
Send a message with automatic network rounting.

circuitpython_nrf24l01.network.constants.TX_NORMAL = 0
Send a routed message.

This is used for most outgoing message types.

circuitpython_nrf24l01.network.constants.TX_ROUTED = 1
Send a routed message.

This is internally used for NETWORK_ACK message routing.

circuitpython_nrf24l01.network.constants.TX_PHYSICAL = 2
Send a message directly to network node.

These usually take 1 transmission, so they don’t get a network ACK because the radio’s auto_ack will serve the
ACK.

circuitpython_nrf24l01.network.constants.TX_LOGICAL = 3
Similar to TX_NORMAL.

This allows the user to define the routed transmission’s first path (these can still get a NETWORK_ACK).

circuitpython_nrf24l01.network.constants.TX_MULTICAST = 4
Broadcast a message to a network level of nodes.

See also:

• Network Levels

• multicast_relay

• multicast()

• multicast_level

93

topology.html#network-levels


nRF24L01 Library Documentation, Release 2.1.0

13.2 Reserved Network Message Types

circuitpython_nrf24l01.network.constants.MESH_ADDR_RESPONSE = 128
Primarily for RF24Mesh

This message_type is used to in the final step of renew_address() route a messages containing a newly
allocated node_address. The header’s reserved attribute for this message_type will store the requesting
mesh node’s node_id related to the newly assigned node_address. Any non-requesting network node receiving
this message_type will forward it to the requesting node using normal network routing.

circuitpython_nrf24l01.network.constants.NETWORK_PING = 130
Used for network pings

This message_type is automatically discarded because the radio’s auto_ack feature will serve up the response.

circuitpython_nrf24l01.network.constants.NETWORK_EXT_DATA = 131
Unsupported at this time as this operation requires a new implementation.

Used for bridging different network protocols between an RF24Network and LAN/WLAN networks.

circuitpython_nrf24l01.network.constants.NETWORK_ACK = 193
Used for network-wide acknowledgements.

The message type used when forwarding acknowledgements directed to the instigating message’s origin. This is
not be confused with the radio’s auto_ack attribute. In fact, all messages (except multicasted ones) take advan-
tage of the radio’s auto_ack feature when transmitting between directly related nodes (ie between a transmitting
node’s parent or child node).

Important: NETWORK_ACK messages are only sent by the last node in the route to a destination. For example:
Node 0o0 sends an instigating message to node 0o11. The NETWORK_ACK message is sent from node 0o1
when it confirms node 0o11 received the instigating message.

Hint: This feature is not flawless because it assumes a reliable connection between all necessary network nodes.

circuitpython_nrf24l01.network.constants.NETWORK_POLL = 194
Primarily for RF24Mesh

This message_type is used with NETWORK_MULTICAST_ADDR to find active/available nodes. Any node receiv-
ing a NETWORK_POLL sent to a NETWORK_MULTICAST_ADDR will respond directly to the sender with a blank
message, indicating the address of the available node via the header’s from_node attribute.

circuitpython_nrf24l01.network.constants.MESH_ADDR_REQUEST = 195
Primarily for RF24Mesh

This message_type is used for requesting Logical Address data from the mesh network’s master node. Any non-
master node receiving this message_type will manually forward it to the master node using normal network
routing.

circuitpython_nrf24l01.network.constants.MESH_ADDR_LOOKUP = 196
The message_type to request a mesh node’s network address from its unique ID.

circuitpython_nrf24l01.network.constants.MESH_ADDR_RELEASE = 197
The message_type when manually expiring a leased address.

circuitpython_nrf24l01.network.constants.MESH_ID_LOOKUP = 198
The message_type to request a mesh node’s unique ID number from its node address.

94 Chapter 13. Network Constants



nRF24L01 Library Documentation, Release 2.1.0

13.3 Generic Network constants

circuitpython_nrf24l01.network.constants.MAX_USR_DEF_MSG_TYPE = 127
A convenient sentinel value.

Any message type above 127 (but cannot exceed 255) are reserved for internal network usage.

circuitpython_nrf24l01.network.constants.NETWORK_DEFAULT_ADDR = 2340
Primarily used by RF24Mesh.

Any mesh node that disconnects or is trying to connect to a mesh network will use this value until it is assigned
a Logical Address from the master node.

circuitpython_nrf24l01.network.constants.NETWORK_MULTICAST_ADDR = 64
A reserved address for multicast messages.

circuitpython_nrf24l01.network.constants.MAX_FRAG_SIZE = 24
Maximum message size for a single frame’s message.

This does not including header’s byte length (which is always 8 bytes).

Warning: Do not increase this value in the source code. Adjust max_message_length instead.

13.4 Message Fragment Types

Message fragments will use these values in the message_type attribute. The sequential fragment id number will
be stored in the reserved attribute, but the actual message type is transmitted in the reserved attribute of the last
fragment.

circuitpython_nrf24l01.network.constants.MSG_FRAG_FIRST = 148
Used to indicate the first frame of a fragmented message.

circuitpython_nrf24l01.network.constants.MSG_FRAG_MORE = 149
Used to indicate a middle frame of a fragmented message.

circuitpython_nrf24l01.network.constants.MSG_FRAG_LAST = 150
Used to indicate the last frame of a fragmented message.

13.5 RF24Mesh specific constants

circuitpython_nrf24l01.network.constants.MESH_LOOKUP_TIMEOUT = 135
Used for lookup_address() & lookup_node_id()

The time (in milliseconds) that a non-master mesh node will wait for a response when requesting a node’s relative
Logical Address or unique ID number from the master node.

circuitpython_nrf24l01.network.constants.MESH_MAX_POLL = 4
The max number of contacts made during renew_address().

A mesh node polls the first 4 network levels (0-3) looking for a response. This value is used to used when
aggregating a list of responding nodes (per level).

circuitpython_nrf24l01.network.constants.MESH_MAX_CHILDREN = 4
The max number of children for 1 mesh node.

13.3. Generic Network constants 95



nRF24L01 Library Documentation, Release 2.1.0

This information is only used by mesh network master nodes when allocating a possible Logical Address for the
requesting node.

circuitpython_nrf24l01.network.constants.MESH_WRITE_TIMEOUT = 115
The time (in milliseconds) used to send messages.

When RF24Mesh.send() is called, This value is only used when getting the node_address assigned to a
node_id from the mesh network’s master node.

96 Chapter 13. Network Constants



CHAPTER

FOURTEEN

TROUBLESHOOTING INFO

14.1 Common Problems

14.1.1 Attribute dependency

The nRF24L01 has 3 key features.

1. auto_ack feature provides transmission verification by using the RX nRF24L01 to automatically and imme-
diatedly send an acknowledgment (ACK) packet in response to received payloads. auto_ack does not require
dynamic_payloads to be enabled.

Note: With the auto_ack feature enabled, you get:

• cyclic redundancy checking (crc) automatically enabled

• to change amount of automatic re-transmit attempts and the delay time between them. See the arc and ard
attributes.

2. dynamic_payloads feature allows either TX/RX nRF24L01 to be able to send/receive payloads with their
size written into the payloads’ packet. With this disabled, both RX/TX nRF24L01 must use matching
payload_length attributes. dynamic_payloads does not require auto_ack to be enabled.

3. ack feature allows the MCU to append a payload to the ACK packet, thus instant bi-directional communication.
A transmitting ACK payload must be loaded into the nRF24L01’s TX FIFO buffer (done using load_ack())
BEFORE receiving the payload that is to be acknowledged. Once transmitted, the payload is released from the
TX FIFO buffer.

Important: This ack feature requires the auto_ack and dynamic_payloads features enabled.

14.1.2 FIFO Capacity

Remeber that the nRF24L01’s FIFO (First-In, First-Out) buffers have 3 levels. This means that there can be up to 3
payloads waiting to be read (RX) and up to 3 payloads waiting to be transmit (TX). Notice there are seperate FIFO
buffers sending & receiving (respectively mentioned in this documentation as TX FIFO & RX FIFO).

Each of the 3 levels in the FIFO buffers can only store a maximum of 32 bytes. If you receive 2 payloads with a length
of 4 bytes each, then there is only 1 level of the RX FIFO buffers left unoccupied.

97



nRF24L01 Library Documentation, Release 2.1.0

14.1.3 Pipes vs Addresses vs Channels

Hint: Please review the Multiceiver example as a demonstration of proper addressing using all pipes (on the same
channel).

Pipes

You should think of the data pipes as a “parking spot” for your payload. There are only six data pipes on the nRF24L01,
thus it can simultaneously “listen” to a maximum of 6 other nRF24L01 radios. However, it can only “talk” to 1 other
nRF24L01 at a time.

Addresses

The specified address is not the address of an nRF24L01 radio, rather it is more like a path that connects the endpoints.
When assigning addresses to a data pipe, you can use any 5 byte long address you can think of (as long as the first byte
of the bytearray is unique among simultaneously broadcasting addresses), so you’re not limited to communicating
with only the same 6 nRF24L01 radios.

Channels

Finnaly, the radio’s channel is not be confused with the radio’s pipes. Channel selection is a way of specifying a certain
radio frequency (frequency = [2400 + channel] MHz). Channel defaults to 76 (like the arduino library), but options
range from 0 to 125 – that’s 2.4 GHz to 2.525 GHz. The channel can be tweaked to find a less occupied frequency
amongst Bluetooth, WiFi, or other ambient signals that use the same spectrum of frequencies.

14.1.4 Settings that must Match

For successful transmissions, most of the endpoint trasceivers’ settings/features must match. These settings/features
include:

• The RX pipe’s address on the receiving nRF24L01 (passed to open_rx_pipe()) MUST match the TX pipe’s
address on the transmitting nRF24L01 (passed to open_tx_pipe())

• address_length

• channel

• data_rate

• dynamic_payloads

• payload_length only when dynamic_payloads is disabled

• auto_ack

• custom ack payloads

• crc

98 Chapter 14. Troubleshooting info

examples.html#multiceiver-example
https://docs.python.org/3/library/stdtypes.html#bytearray


nRF24L01 Library Documentation, Release 2.1.0

Settings that do not need to Match

In fact the only attributes that aren’t required to match on both endpoint transceivers would be

• the identifying data pipe number passed to open_rx_pipe() or load_ack() (as long as the corresponding
addresses match)

• pa_level

• arc

• ard

The ask_no_ack feature can be used despite the settings/features configuration (see send() & write() function
parameters for more details).

14.2 About the lite version

New in version 1.2.0.

This library contains a “lite” version of rf24.py titled rf24_lite.py. It has been developed to save space on micro-
controllers with limited amount of RAM and/or storage (like boards using the ATSAMD21). The following function-
ality has been removed from the lite version:

• The FakeBLE, RF24Network , and RF24Mesh classes are not compatible with the rf24_lite.py module.

• is_plus_variant is removed, meaning the lite version is not compatibility with the older non-plus variants of
the nRF24L01.

• address() removed.

• print_details() removed. However you can use the following function to dump all available registers’ values
(for advanced users):

# let `nrf` be the instantiated RF24 object
def dump_registers(end=0x1e):

for i in range(end):
if i in (0xA, 0xB, 0x10):

print(hex(i), "=", nrf._reg_read_bytes(i))
elif i not in (0x18, 0x19, 0x1a, 0x1b):

print(hex(i), "=", hex(nrf._reg_read(i)))

• dynamic_payloads applies to all pipes, not individual pipes. This attribute will return a bool instead of an
int. set_dynamic_payloads() and get_dynamic_payloads() have been removed.

• payload_length applies to all pipes, not individual pipes. set_payload_length() and
get_payload_length() have been removed.

• load_ack() is available, but it will not throw exceptions for malformed buf or invalid pipe_number parame-
ters. Rather any call to load_ack() with invalid parameters will have no affect on the TX FIFO.

• crc removed. 2-bytes encoding scheme (CRC16) is always enabled.

• auto_ack removed. This is always enabled for all pipes. Pass ask_no_ack parameter as True to send() or
write() to disable automatic acknowledgement for TX operations.

• is_lna_enabled removed as it only affects non-plus variants of the nRF24L01.

• pa_level is available, but it will not accept a list or tuple.

14.2. About the lite version 99

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple


nRF24L01 Library Documentation, Release 2.1.0

• start_carrier_wave(), & stop_carrier_wave() removed. These only perform a test of the nRF24L01’s
hardware. rpd is still available.

• All comments and docstrings removed, meaning help() will not provide any specific information. Exception
prompts have also been reduced and adjusted accordingly.

• Cannot switch between different radio configurations using context manager (the The with statement blocks).
It is advised that only one RF24 object be instantiated when RAM is limited (less than or equal to 32KB).

• last_tx_arc attribute removed because it is only meant for troubleshooting.

• allow_ask_no_ack attribute removed because it is only provided for the Si24R1 chinese clone.

• set_auto_retries() & get_auto_retries() removed. Use ard & arc attributes instead.

14.3 Testing nRF24L01+PA+LNA module

The following are semi-successful test results using a nRF24L01+PA+LNA module:

14.3.1 The Setup

I wrapped the PA/LNA module with electrical tape and then foil around that (for shielding) while being very careful to
not let the foil touch any current carrying parts (like the GPIO pins and the soldier joints for the antenna mount). Then
I wired up a PA/LNA module with a 3V regulator (L4931 with a 2.2 µF capacitor between Vout & GND) using my
ItsyBitsy M4 5V (USB) pin going directly to the L4931 Vin pin. The following are experiences from running simple,
ack, & stream examples with a reliable nRF24L01+ (no PA/LNA) on the other end (driven by a Raspberry Pi 2):

14.3.2 Results (ordered by pa_level settings)

• 0 dBm: master() worked the first time (during simple example) then continuously failed (during all examples).
slave() worked on simple & stream examples, but the opposing master() node reporting that ACK packets
(without payloads) were not received from the PA/LNA module; slave() failed to send ACK packet payloads
during the ack example.

• -6 dBm: master() worked consistently on simple, ack, & stream example. slave() worked reliably on simple
& stream examples, but failed to transmit any ACK packet payloads in the ack example.

• -12 dBm: master()worked consistently on simple, ack, & stream example. slave()worked reliably on simple
& stream examples, but failed to transmit some ACK packet payloads in the ack example.

• -18 dBm: master()worked consistently on simple, ack, & stream example. slave()worked reliably on simple,
ack, & stream examples, meaning all ACK packet payloads were successfully transmit in the ack example.

I should note that without shielding the PA/LNA module and using the L4931 3V regulator, no TX transmissions got
sent (including ACK packets for the auto_ack feature).

100 Chapter 14. Troubleshooting info

https://docs.python.org/3/reference/compound_stmts.html#with


nRF24L01 Library Documentation, Release 2.1.0

14.3.3 Conclusion

The PA/LNA modules seem to require quite a bit more power to transmit. The L4931 regulator that I used in the tests
boasts a 300 mA current limit and a typical current of 250 mA. While the ItsyBitsy M4 boasts a 500 mA max, it would
seem that much of that is consumed internally. Since playing with the pa_level is a current saving hack (as noted
in the datasheet), I can only imagine that a higher power 3V regulator may enable sending transmissions (including
ACK packets – with or without ACK payloads attached) from PA/LNA modules using higher pa_level settings. More
testing is called for, but I don’t have an oscilloscope to measure the peak current draws.

14.3. Testing nRF24L01+PA+LNA module 101



nRF24L01 Library Documentation, Release 2.1.0

102 Chapter 14. Troubleshooting info



CHAPTER

FIFTEEN

GETTING STARTED

15.1 Introduction

This is a Circuitpython driver library for the nRF24L01(+) transceiver.

Originally this code was a Micropython module written by Damien P. George & Peter Hinch which can still be found
here

The Micropython source has since been rewritten to expose all the nRF24L01’s features and for Circuitpython com-
patible devices (including linux-based SoC computers like the Raspberry Pi). Modified by Brendan Doherty & Rhys
Thomas.

• Authors: Damien P. George, Peter Hinch, Rhys Thomas, Brendan Doherty

15.1.1 Features currently supported

• Change the address’s length (can be 3 to 5 bytes long)

• Dynamically sized payloads (max 32 bytes each) or statically sized payloads

• Automatic responding acknowledgment (ACK) packets for verifying transmission success

• Append custom payloads to the acknowledgment (ACK) packets for instant bi-directional communication

• Mark a single payload for no acknowledgment (ACK) from the receiving nRF24L01 (see ask_no_ack parameter
for send() and write() functions)

• Invoke the “re-use the same payload” feature (for manually re-transmitting failed transmissions that remain in
the TX FIFO buffer)

• Multiple payload transmissions with one function call (see documentation on the send() function and try out
the Stream example)

• Context manager compatible for easily switching between different radio configurations using The with
statement blocks (not available in rf24_lite.py version)

• Configure the interrupt (IRQ) pin to trigger (active low) on received, sent, and/or failed transmissions (these 3
events control 1 IRQ pin). There’s also virtual representations of these interrupt events available (see irq_dr,
irq_ds, & irq_df attributes)

• Invoke sleep mode (AKA power down mode) for ultra-low current consumption

• cyclic redundancy checking (CRC) up to 2 bytes long

• Adjust the nRF24L01’s builtin automatic re-transmit feature’s parameters (arc: number of attempts, ard : delay
between attempts)

• Adjust the nRF24L01’s frequency channel (2.4 - 2.525 GHz)

103

https://github.com/micropython/micropython/tree/master/drivers/nrf24l01
examples.html#stream-example
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/reference/compound_stmts.html#with


nRF24L01 Library Documentation, Release 2.1.0

• Adjust the nRF24L01’s power amplifier level (0, -6, -12, or -18 dBm)

• Adjust the nRF24L01’s RF data rate (250kbps, 1Mbps, or 2Mbps)

• An nRF24L01 driven by this library can communicate with a nRF24L01 on an Arduino driven by the TMRh20
RF24 library.

• fake BLE module for sending BLE beacon advertisments from the nRF24L01 as outlined by Dmitry Grinberg
in his write-up (including C source code).

• MulticeiverTM mode (up to 6 TX nRF24L01 “talking” to 1 RX nRF24L01 simultaneously). See the Multiceiver
Example

• Networking capability that allows up to 781 tranceivers to interact with each other.

– This does not mean the radio can connect to WiFi. The networking implementation is a custom protocol
ported from TMRh20’s RF24Network & RF24Mesh libraries.

15.1.2 Dependencies

This driver depends on:

• Adafruit CircuitPython Firmware or the Adafruit_Blinka library for Linux SoC boards like Raspberry Pi

• adafruit_bus_device (specifically the SPIDevice class)

Tip: Use CircuitPython v6.3.0 or newer because faster SPI execution yields faster transmissions.

• The SpiDev module is a C-extention that executes SPI transactions faster than Adafruit’s PureIO library (a de-
pendency of the Adafruit_Blinka library).

The adafruit_bus_device, Adafruit_Blinka library, and SpiDev libraries are installed automatically on Linux when
installing this library.

New in version 2.1.0: Added support for the SpiDev module

Important: This library supports Python 3.7 or newer because it uses the function time.monotonic_ns()
which returns an arbitrary time “counter” as an int of nanoseconds. CircuitPython firmware also supports time.
monotonic_ns().

15.1.3 Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from PyPI. To install for
current user:

pip3 install circuitpython-nrf24l01

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install circuitpython-nrf24l01

104 Chapter 15. Getting Started

http://tmrh20.github.io/RF24/
http://tmrh20.github.io/RF24/
http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery
http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery
examples.html#multiceiver-example
examples.html#multiceiver-example
https://circuitpython.org/downloads
https://github.com/adafruit/Adafruit_Blinka
https://circuitpython.readthedocs.io/en/latest/shared-bindings/adafruit_bus_device/index.html#module-adafruit_bus_device
https://circuitpython.readthedocs.io/en/latest/shared-bindings/adafruit_bus_device/index.html#adafruit_bus_device.SPIDevice
https://pypi.org/project/spidev/
https://github.com/adafruit/Adafruit_Blinka
https://circuitpython.readthedocs.io/en/latest/shared-bindings/adafruit_bus_device/index.html#module-adafruit_bus_device
https://github.com/adafruit/Adafruit_Blinka
https://pypi.org/project/spidev/
https://pypi.org/project/spidev/
https://docs.python.org/3/library/time.html#time.monotonic_ns
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/time.html#time.monotonic_ns
https://docs.python.org/3/library/time.html#time.monotonic_ns
https://pypi.org/project/circuitpython-nrf24l01/


nRF24L01 Library Documentation, Release 2.1.0

15.2 Pinout

The nRF24L01 is controlled through SPI so there are 3 pins (SCK, MOSI, & MISO) that can only be connected to
their counterparts on the MCU (microcontroller unit). The other 2 essential pins (CE & CSN) can be connected to any
digital output pins. Lastly, the only optional GPIO pin on the nRF24L01 is the IRQ (interrupt; a digital output that’s
active when low) pin and is only connected to the MCU via a digital input pin during the interrupt example.

Table 1: The pins used in this library’s examples.
nRF24L01ItsyBitsy M4 Raspberry Pi
GND GND GND
VCC 3.3V 3V
CE D4

• GPIO4 if using CircuitPython’s SPIDevice
• GPIO22 if using the SpiDev module

CSN D5
• GPIO5 if using CircuitPython’s SPIDevice
• GPIO8 (CE0) if using the SpiDev module

SCK SCK GPIO11 (SCK)
MOSI MOSI GPIO10 (MOSI)
MISO MISO GPIO9 (MISO)
IRQ D12 GPIO12

Tip: User reports and personal experiences have improved results if there is a capacitor of 100 mirofarads (+ another
optional 0.1 microfarads capacitor for added stability) connected in parrallel to the VCC and GND pins.

Important: The nRF24L01’s VCC pin is not 5V compliant. All other nRF24L01 pins should be 5V compliant, but
it is safer to assume they are not.

15.2. Pinout 105

https://lastminuteengineers.com/nrf24l01-arduino-wireless-communication/#nrf24l01-transceiver-module-pinout
https://circuitpython.readthedocs.io/en/latest/shared-bindings/adafruit_bus_device/index.html#adafruit_bus_device.SPIDevice
https://pypi.org/project/spidev/
https://circuitpython.readthedocs.io/en/latest/shared-bindings/adafruit_bus_device/index.html#adafruit_bus_device.SPIDevice
https://pypi.org/project/spidev/


nRF24L01 Library Documentation, Release 2.1.0

15.3 Using The Examples

See examples for testing certain features of this the library. The examples were developed and tested on both Raspberry
Pi and ItsyBitsy M4. Pins have been hard coded in the examples for the corresponding device, so please adjust these
accordingly to your circuitpython device if necessary.

15.3.1 For an interactive REPL

All examples can be imported from within an interactive python REPL.

1. Make sure the examples are located in the current working directory. On CircuitPython devices, this will be the
root directory of the CIRCUITPY drive.

2. Import everything from the desired example. The following code snippet demonstrates running the Simple Test
example

>>> from nrf24l01_simple_test import *
Which radio is this? Enter '0' or '1'. Defaults to '0'

nRF24L01 Simple test.
Run slave() on receiver
Run master() on transmitter

>>> master()
Transmission successful! Time to Transmit: 3906.25 us. Sent: 0.0
Transmission successful! Time to Transmit: 2929.69 us. Sent: 0.01
Transmission successful! Time to Transmit: 2929.69 us. Sent: 0.02
Transmission successful! Time to Transmit: 3906.25 us. Sent: 0.03
Transmission successful! Time to Transmit: 4882.81 us. Sent: 0.04

15.3.2 For CircuitPython devices

1. Copy the examples to the root directory of the CIRCUITPY device.

2. Rename the desired example file to main.py.

3. If the REPL is not already running, then the example should start automatically. If the REPL is already running
in interactive mode, then press ctrl+d to do a soft reset, and the example should start automatically.

15.3.3 For CPython in Linux

1. Clone the library repository, then navigate to the reository’s example directory.

git clone https://github.com/2bndy5/CircuitPython_nRF24L01.git
cd CircuitPython_nRF24L01/examples

2. Run the example as a normal python program

python3 nrf24l01_simple_test.py

106 Chapter 15. Getting Started

examples.html
examples.html#simple-test
examples.html#simple-test


nRF24L01 Library Documentation, Release 2.1.0

15.4 What to purchase

See the following links to Sparkfun or just google “nRF24L01+”.

• 2.4GHz Transceiver IC - nRF24L01+

• SparkFun Transceiver Breakout - nRF24L01+

• SparkFun Transceiver Breakout - nRF24L01+ (RP-SMA)

It is worth noting that you generally want to buy more than 1 as you need 2 for testing – 1 to send & 1 to receive and vise
versa. This library has been tested on a cheaply bought 6 pack from Amazon.com, but don’t take Amazon or eBay for
granted! There are other wireless transceivers that are NOT compatible with this library. For instance, the esp8266-01
(also sold in packs) is NOT compatible with this library, but looks very similar to the nRF24L01+ and could lead to an
accidental purchase.

See also:

Beware, there are also nrf24l01(+) clones and counterfeits that may not work the same.

15.4.1 Power Stability

If you’re not using a dedicated 3V regulator to supply power to the nRF24L01, then adding capcitor(s) (100 µF + an
optional 0.1µF) in parrellel (& as close as possible) to the VCC and GND pins is highly recommended. Stablizing the
power input provides significant performance increases. More finite details about the nRF24L01 are available from the
datasheet (referenced here in the documentation as the nRF24L01+ Specification Sheet)

15.4.2 About the nRF24L01+PA+LNA modules

You may find variants of the nRF24L01 transceiver that are marketed as “nRF24L01+PA+LNA”. These modules are
distinct in the fact that they come with a detachable (SMA-type) antenna. They employ additional circuitry with the
antenna for enhanced Power Amplification (PA) and Low Noise Amplification (LNA) features. While they boast greater
range with the same functionality, they are subject to a couple lesser known (and lesser advertised) drawbacks:

Additional requirements for the PA/LNA modules

These requirements are dependent on what manufacturer produced the radio module.

1. Needs a stronger power source. Below is a chart of advertised current requirements that many MCU boards’ 3V
regulators may not be able to provide (after supplying power to internal components).

Specification Value
Emission mode current(peak) 115 mA
Receive Mode current(peak) 45 mA
Power-down mode current 4.2 µA

Important: These values may be different depending on what manufacturer produced the radio module. Please
consult the manufacturer’s specifications or datasheet.

2. Needs shielding from electromagnetic interference. Shielding usually works best when it has a path to ground
(GND pin), but this connection to the GND pin is not required.

15.4. What to purchase 107

https://www.sparkfun.com/products/690
https://www.sparkfun.com/products/691
https://www.sparkfun.com/products/705
https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf


nRF24L01 Library Documentation, Release 2.1.0

See also:

I have documented Testing nRF24L01+PA+LNA module

15.4.3 nRF24L01(+) clones and counterfeits

This library does not directly support clones/counterfeits as there is no way for the library to differentiate between an
actual nRF24L01+ and a clone/counterfeit. To determine if your purchase is a counterfeit, please contact the retailer
you purchased from (also reading this article and its links might help). The most notable clone is the Si24R1. I could
not find the Si24R1 datasheet in english. Troubleshooting the SI24R1 may require replacing the onboard antenna with a
wire. Furthermore, the Si24R1 has different power amplifier options as noted in the RF_PWR section (bits 0 through 2)
of the RF_SETUP register (address 0x06) of the datasheet. While the options’ values differ from those identified by this
library’s API, the underlying commands to configure those options are almost identical to the nRF24L01. The Si24R1
is also famous for not supporting auto_ack correctly because the designers “cloned” a typo from the 1st version of
the nRF24L01 (non-plus) datasheet into the Si24R1 firmware. Other known clones include the bk242x (also known as
RFM7x).

See also:

Read this article about using clones with missing capacitors (includes pictures).

15.5 Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.
To contribute, all you need to do is fork this repository, develop your idea(s) and submit a pull request when stable. To
initiate a discussion of idea(s), you need only open an issue on the aforementioned repository (doesn’t have to be a bug
report).

15.5.1 Future Project Ideas/Additions

The following are only ideas; they are not currently supported by this circuitpython library.

• There’s a few blog posts by Nerd Ralph demonstrating how to use the nRF24L01 via 2 or 3 pins (uses custom
bitbanging SPI functions and an external circuit involving a resistor and a capacitor)

• TCI/IP OSI layer, maybe something like TMRh20’s RF24Ethernet

• implement the Gazelle-based protocol used by the BBC micro-bit (makecode.com’s radio blocks) Additional
resources can be found at the MicroPython firmware source code and its related documentation.

15.5.2 Sphinx documentation

Sphinx and Graphviz are used to build the documentation based on rST files and comments in the code.

108 Chapter 15. Getting Started

troubleshooting.html#testing-nrf24l01-pa-lna-module
https://hackaday.com/2015/02/23/nordic-nrf24l01-real-vs-fake/
https://lcsc.com/product-detail/RF-Transceiver-ICs_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.html
https://datasheet.lcsc.com/szlcsc/1811142211_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.pdf
https://forum.mysensors.org/post/96871
https://forum.mysensors.org/post/96871
https://datasheet.lcsc.com/szlcsc/1811142211_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.pdf#%5B%7B%22num%22%3A329%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C0%2C755%2Cnull%5D
https://datasheet.lcsc.com/szlcsc/1811142211_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.pdf#%5B%7B%22num%22%3A329%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C0%2C755%2Cnull%5D
https://ncrmnt.org/2021/01/03/nrf24l01-fixing-the-magic-finger-problem/
https://github.com/2bndy5/CircuitPython_nRF24L01/blob/master/CODE_OF_CONDUCT.md
https://github.com/2bndy5/CircuitPython_nRF24L01.git
http://nerdralph.blogspot.com/2015/05/nrf24l01-control-with-2-mcu-pins-using.html
http://nRF24.github.io/RF24Ethernet/
https://makecode.microbit.org/reference/radio
https://github.com/bbcmicrobit/micropython/blob/master/source/microbit/modradio.cpp
https://microbit-micropython.readthedocs.io/en/latest/radio.html


nRF24L01 Library Documentation, Release 2.1.0

Install Graphviz

On Windows, installing Graphviz library is done differently. Check out the Graphviz downloads page. Besure that the
graphiz/bin directory is in the PATH environment variable (there’s an option in the installer for this). After Graphviz
is installed, reboot the PC so the updated PATH environment variable takes affect.

On Linux, just run:

sudo apt-get install graphviz

Installing Sphinx necessities

First, install dependencies (feel free to reuse the virtual environment from above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-material sphinx-copybutton

Building the documentation

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build

This will output the documentation to docs/_build directory. Open the index.html in your browser to view them. It
will also (due to -W) error out on any warning like the Github action, Build CI, does. This is a good way to locally
verify it will pass.

15.6 Site Index

genindex

15.6. Site Index 109

https://graphviz.org/download/
greetings.html#installing-from-pypi


nRF24L01 Library Documentation, Release 2.1.0

110 Chapter 15. Getting Started



INDEX

Symbols
__len__() (circuitpython_nrf24l01.fake_ble.ServiceData

method), 64
__len__() (circuitpython_nrf24l01.network.structs.FrameQueue

method), 75
__repr__() (circuitpython_nrf24l01.fake_ble.ServiceData

method), 64

A
ack (circuitpython_nrf24l01.rf24.RF24 attribute), 49
address() (circuitpython_nrf24l01.rf24.RF24 method),

41
address_length (circuitpython_nrf24l01.rf24.RF24 at-

tribute), 41
address_prefix (circuit-

python_nrf24l01.rf24_network.RF24Network
attribute), 79

address_repr() (in module circuit-
python_nrf24l01.rf24), 44

address_suffix (circuit-
python_nrf24l01.rf24_network.RF24Network
attribute), 79

advertise() (circuitpython_nrf24l01.fake_ble.FakeBLE
method), 61

allow_ask_no_ack (circuitpython_nrf24l01.rf24.RF24
attribute), 49

allow_children (circuit-
python_nrf24l01.rf24_mesh.RF24Mesh at-
tribute), 90

allow_multicast (circuit-
python_nrf24l01.rf24_network.RF24Network
attribute), 85

any() (circuitpython_nrf24l01.rf24.RF24 method), 35
arc (circuitpython_nrf24l01.rf24.RF24 attribute), 55
ard (circuitpython_nrf24l01.rf24.RF24 attribute), 55
auto_ack (circuitpython_nrf24l01.rf24.RF24 attribute),

54
AUTO_ROUTING (in module circuit-

python_nrf24l01.network.constants), 93
available() (circuitpython_nrf24l01.fake_ble.FakeBLE

method), 62

available() (circuitpython_nrf24l01.rf24.RF24
method), 35

available() (circuitpython_nrf24l01.rf24_network.RF24Network
method), 82

B
BATTERY_UUID (in module circuit-

python_nrf24l01.fake_ble), 64
BatteryServiceData (class in circuit-

python_nrf24l01.fake_ble), 64
BLE_FREQ (in module circuitpython_nrf24l01.fake_ble),

59
block_less_callback (circuit-

python_nrf24l01.rf24_mesh.RF24Mesh at-
tribute), 90

buffer (circuitpython_nrf24l01.fake_ble.ServiceData
property), 64

C
channel (circuitpython_nrf24l01.fake_ble.FakeBLE at-

tribute), 60
channel (circuitpython_nrf24l01.rf24.RF24 attribute),

50
check_connection() (circuit-

python_nrf24l01.rf24_mesh.RF24Mesh
method), 90

chunk() (in module circuitpython_nrf24l01.fake_ble), 58
clear_status_flags() (circuit-

python_nrf24l01.rf24.RF24 method), 46
close_rx_pipe() (circuitpython_nrf24l01.rf24.RF24

method), 34
crc (circuitpython_nrf24l01.rf24.RF24 attribute), 50
crc24_ble() (in module circuit-

python_nrf24l01.fake_ble), 58

D
data (circuitpython_nrf24l01.fake_ble.BatteryServiceData

property), 65
data (circuitpython_nrf24l01.fake_ble.QueueElement at-

tribute), 60
data (circuitpython_nrf24l01.fake_ble.ServiceData

property), 64

111



nRF24L01 Library Documentation, Release 2.1.0

data (circuitpython_nrf24l01.fake_ble.TemperatureServiceData
property), 64

data (circuitpython_nrf24l01.fake_ble.UrlServiceData
property), 65

data_rate (circuitpython_nrf24l01.rf24.RF24 at-
tribute), 50

dequeue() (circuitpython_nrf24l01.network.structs.FrameQueue
method), 75

dhcp_dict (circuitpython_nrf24l01.rf24_mesh.RF24Mesh
attribute), 90

dynamic_payloads (circuitpython_nrf24l01.rf24.RF24
attribute), 51

E
EDDYSTONE_UUID (in module circuit-

python_nrf24l01.fake_ble), 64
enqueue() (circuitpython_nrf24l01.network.structs.FrameQueue

method), 75

F
FakeBLE (class in circuitpython_nrf24l01.fake_ble), 60
fifo() (circuitpython_nrf24l01.rf24.RF24 method), 46
flush_rx() (circuitpython_nrf24l01.rf24.RF24

method), 46
flush_tx() (circuitpython_nrf24l01.rf24.RF24

method), 46
fragmentation (circuit-

python_nrf24l01.rf24_network.RF24Network
attribute), 85

frame_buf (circuitpython_nrf24l01.rf24_network.RF24Network
attribute), 79

frame_id (circuitpython_nrf24l01.network.structs.RF24NetworkHeader
attribute), 73

FrameQueue (class in circuit-
python_nrf24l01.network.structs), 75

FrameQueueFrag (class in circuit-
python_nrf24l01.network.structs), 76

from_node (circuitpython_nrf24l01.network.structs.RF24NetworkHeader
attribute), 73

G
get_auto_ack() (circuitpython_nrf24l01.rf24.RF24

method), 54
get_auto_retries() (circuit-

python_nrf24l01.rf24.RF24 method), 56
get_dynamic_payloads() (circuit-

python_nrf24l01.rf24.RF24 method), 52
get_payload_length() (circuit-

python_nrf24l01.rf24.RF24 method), 53

H
header (circuitpython_nrf24l01.network.structs.RF24NetworkFrame

attribute), 74

hop_channel() (circuit-
python_nrf24l01.fake_ble.FakeBLE method),
61

I
interrupt_config() (circuit-

python_nrf24l01.fake_ble.FakeBLE method),
63

interrupt_config() (circuit-
python_nrf24l01.rf24.RF24 method), 49

irq_df (circuitpython_nrf24l01.rf24.RF24 attribute), 45
irq_dr (circuitpython_nrf24l01.rf24.RF24 attribute), 44
irq_ds (circuitpython_nrf24l01.rf24.RF24 attribute), 45
is_ack_type() (circuit-

python_nrf24l01.network.structs.RF24NetworkFrame
method), 75

is_address_valid() (circuit-
python_nrf24l01.network.structs method),
76

is_lna_enabled (circuitpython_nrf24l01.rf24.RF24 at-
tribute), 51

is_plus_variant (circuitpython_nrf24l01.rf24.RF24
attribute), 42

L
last_tx_arc (circuitpython_nrf24l01.rf24.RF24 at-

tribute), 42
len_available() (circuit-

python_nrf24l01.fake_ble.FakeBLE method),
61

listen (circuitpython_nrf24l01.rf24.RF24 attribute), 34
load_ack() (circuitpython_nrf24l01.rf24.RF24

method), 40
load_dhcp() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh

method), 91
lookup_address() (circuit-

python_nrf24l01.rf24_mesh.RF24Mesh
method), 89

lookup_node_id() (circuit-
python_nrf24l01.rf24_mesh.RF24Mesh
method), 89

M
mac (circuitpython_nrf24l01.fake_ble.FakeBLE at-

tribute), 60
mac (circuitpython_nrf24l01.fake_ble.QueueElement at-

tribute), 59
MAX_FRAG_SIZE (in module circuit-

python_nrf24l01.network.constants), 95
max_message_length (circuit-

python_nrf24l01.rf24_network.RF24Network
attribute), 85

112 Index



nRF24L01 Library Documentation, Release 2.1.0

max_queue_size (circuit-
python_nrf24l01.network.structs.FrameQueue
attribute), 75

MAX_USR_DEF_MSG_TYPE (in module circuit-
python_nrf24l01.network.constants), 95

MESH_ADDR_LOOKUP (in module circuit-
python_nrf24l01.network.constants), 94

MESH_ADDR_RELEASE (in module circuit-
python_nrf24l01.network.constants), 94

MESH_ADDR_REQUEST (in module circuit-
python_nrf24l01.network.constants), 94

MESH_ADDR_RESPONSE (in module circuit-
python_nrf24l01.network.constants), 94

MESH_ID_LOOKUP (in module circuit-
python_nrf24l01.network.constants), 94

MESH_LOOKUP_TIMEOUT (in module circuit-
python_nrf24l01.network.constants), 95

MESH_MAX_CHILDREN (in module circuit-
python_nrf24l01.network.constants), 95

MESH_MAX_POLL (in module circuit-
python_nrf24l01.network.constants), 95

MESH_WRITE_TIMEOUT (in module circuit-
python_nrf24l01.network.constants), 96

message (circuitpython_nrf24l01.network.structs.RF24NetworkFrame
attribute), 74

message_type (circuit-
python_nrf24l01.network.structs.RF24NetworkHeader
attribute), 73

MSG_FRAG_FIRST (in module circuit-
python_nrf24l01.network.constants), 95

MSG_FRAG_LAST (in module circuit-
python_nrf24l01.network.constants), 95

MSG_FRAG_MORE (in module circuit-
python_nrf24l01.network.constants), 95

multicast() (circuitpython_nrf24l01.rf24_network.RF24Network
method), 83

multicast_level (circuit-
python_nrf24l01.rf24_network.RF24Network
attribute), 85

multicast_relay (circuit-
python_nrf24l01.rf24_network.RF24Network
attribute), 85

N
name (circuitpython_nrf24l01.fake_ble.FakeBLE at-

tribute), 60
name (circuitpython_nrf24l01.fake_ble.QueueElement at-

tribute), 59
NETWORK_ACK (in module circuit-

python_nrf24l01.network.constants), 94
NETWORK_DEFAULT_ADDR (in module circuit-

python_nrf24l01.network.constants), 95
NETWORK_EXT_DATA (in module circuit-

python_nrf24l01.network.constants), 94

NETWORK_MULTICAST_ADDR (in module circuit-
python_nrf24l01.network.constants), 95

NETWORK_PING (in module circuit-
python_nrf24l01.network.constants), 94

NETWORK_POLL (in module circuit-
python_nrf24l01.network.constants), 94

node_address (circuit-
python_nrf24l01.rf24_network.RF24Network
attribute), 82

node_id (circuitpython_nrf24l01.rf24_mesh.RF24Mesh
attribute), 88

O
open_rx_pipe() (circuitpython_nrf24l01.rf24.RF24

method), 34
open_tx_pipe() (circuitpython_nrf24l01.rf24.RF24

method), 33

P
pa_level (circuitpython_nrf24l01.fake_ble.QueueElement

attribute), 59
pa_level (circuitpython_nrf24l01.rf24.RF24 attribute),

51
pa_level_at_1_meter (circuit-

python_nrf24l01.fake_ble.UrlServiceData
property), 65

pack() (circuitpython_nrf24l01.network.structs.RF24NetworkFrame
method), 75

pack() (circuitpython_nrf24l01.network.structs.RF24NetworkHeader
method), 74

parent (circuitpython_nrf24l01.rf24_network.RF24Network
attribute), 84

payload_length (circuitpython_nrf24l01.rf24.RF24 at-
tribute), 52

peek() (circuitpython_nrf24l01.network.structs.FrameQueue
method), 75

peek() (circuitpython_nrf24l01.rf24_network.RF24Network
method), 82

pipe (circuitpython_nrf24l01.rf24.RF24 attribute), 45
power (circuitpython_nrf24l01.rf24.RF24 attribute), 41
print_details() (circuitpython_nrf24l01.rf24.RF24

method), 42
print_pipes() (circuitpython_nrf24l01.rf24.RF24

method), 43

Q
queue (circuitpython_nrf24l01.rf24_network.RF24Network

attribute), 79
QueueElement (class in circuit-

python_nrf24l01.fake_ble), 59

R
read() (circuitpython_nrf24l01.fake_ble.FakeBLE

method), 63

Index 113



nRF24L01 Library Documentation, Release 2.1.0

read() (circuitpython_nrf24l01.rf24.RF24 method), 35
read() (circuitpython_nrf24l01.rf24_network.RF24Network

method), 82
release_address() (circuit-

python_nrf24l01.rf24_mesh.RF24Mesh
method), 90

renew_address() (circuit-
python_nrf24l01.rf24_mesh.RF24Mesh
method), 88

resend() (circuitpython_nrf24l01.rf24.RF24 method),
39

reserved (circuitpython_nrf24l01.network.structs.RF24NetworkHeader
attribute), 74

ret_sys_msg (circuitpython_nrf24l01.rf24_network.RF24Network
attribute), 79

reverse_bits() (in module circuit-
python_nrf24l01.fake_ble), 58

RF24 (class in circuitpython_nrf24l01.rf24), 33
RF24Mesh (class in circuitpython_nrf24l01.rf24_mesh),

87
RF24MeshNoMaster (class in circuit-

python_nrf24l01.rf24_mesh), 87
RF24Network (class in circuit-

python_nrf24l01.rf24_network), 81
RF24NetworkFrame (class in circuit-

python_nrf24l01.network.structs), 74
RF24NetworkHeader (class in circuit-

python_nrf24l01.network.structs), 73
RF24NetworkRoutingOnly (class in circuit-

python_nrf24l01.rf24_network), 81
route_timeout (circuit-

python_nrf24l01.rf24_network.RF24Network
attribute), 85

rpd (circuitpython_nrf24l01.rf24.RF24 attribute), 47
rx_cache (circuitpython_nrf24l01.fake_ble.FakeBLE at-

tribute), 62
rx_queue (circuitpython_nrf24l01.fake_ble.FakeBLE at-

tribute), 62

S
save_dhcp() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh

method), 91
send() (circuitpython_nrf24l01.rf24.RF24 method), 36
send() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh

method), 88
send() (circuitpython_nrf24l01.rf24_network.RF24Network

method), 83
ServiceData (class in circuitpython_nrf24l01.fake_ble),

64
set_address() (circuit-

python_nrf24l01.rf24_mesh.RF24Mesh
method), 91

set_auto_ack() (circuitpython_nrf24l01.rf24.RF24
method), 54

set_auto_retries() (circuit-
python_nrf24l01.rf24.RF24 method), 55

set_dynamic_payloads() (circuit-
python_nrf24l01.rf24.RF24 method), 52

set_payload_length() (circuit-
python_nrf24l01.rf24.RF24 method), 53

show_pa_level (circuit-
python_nrf24l01.fake_ble.FakeBLE attribute),
60

start_carrier_wave() (circuit-
python_nrf24l01.rf24.RF24 method), 47

stop_carrier_wave() (circuit-
python_nrf24l01.rf24.RF24 method), 48

swap_bits() (in module circuit-
python_nrf24l01.fake_ble), 58

T
TEMPERATURE_UUID (in module circuit-

python_nrf24l01.fake_ble), 64
TemperatureServiceData (class in circuit-

python_nrf24l01.fake_ble), 64
to_node (circuitpython_nrf24l01.network.structs.RF24NetworkHeader

attribute), 73
to_string() (circuitpython_nrf24l01.network.structs.RF24NetworkHeader

method), 74
tx_full (circuitpython_nrf24l01.rf24.RF24 attribute),

44
TX_LOGICAL (in module circuit-

python_nrf24l01.network.constants), 93
TX_MULTICAST (in module circuit-

python_nrf24l01.network.constants), 93
TX_NORMAL (in module circuit-

python_nrf24l01.network.constants), 93
TX_PHYSICAL (in module circuit-

python_nrf24l01.network.constants), 93
TX_ROUTED (in module circuit-

python_nrf24l01.network.constants), 93
tx_timeout (circuitpython_nrf24l01.rf24_network.RF24Network

attribute), 85

U
unpack() (circuitpython_nrf24l01.network.structs.RF24NetworkFrame

method), 74
unpack() (circuitpython_nrf24l01.network.structs.RF24NetworkHeader

method), 74
update() (circuitpython_nrf24l01.rf24.RF24 method),

45
update() (circuitpython_nrf24l01.rf24_network.RF24Network

method), 82
UrlServiceData (class in circuit-

python_nrf24l01.fake_ble), 65
uuid (circuitpython_nrf24l01.fake_ble.ServiceData

property), 64

114 Index



nRF24L01 Library Documentation, Release 2.1.0

W
whiten() (circuitpython_nrf24l01.fake_ble.FakeBLE

method), 61
whitener() (in module circuit-

python_nrf24l01.fake_ble), 58
write() (circuitpython_nrf24l01.rf24.RF24 method), 39
write() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh

method), 89
write() (circuitpython_nrf24l01.rf24_network.RF24Network

method), 84

Index 115


	nRF24L01 Features
	Simple test
	ACK Payloads Example
	Multiceiver Example
	Scanner Example
	Reading the scanner output

	IRQ Pin Example

	Library-Specific Features
	Stream Example
	Context Example
	Manual ACK Example
	Network Test

	OTA compatibility
	Fake BLE Example
	TMRh20’s C++ libraries

	Basic RF24 API
	Advanced RF24 API
	Debugging Output
	Status Byte
	FIFO management
	Ambiguous Signal Detection

	Configurable RF24 API
	dynamic_payloads
	payload_length
	auto_ack
	Auto-Retry feature

	BLE API
	BLE Limitations
	fake_ble module helpers
	QueueElement class
	FakeBLE class
	Unavailable RF24 functionality

	Service related classes
	Abstract Parent
	Service data UUID numbers
	Derivitive Children


	Network Topology
	Network Levels
	Physical addresses vs Logical addresses
	Translating Logical to Physical
	Two networks coexisting on the same channel


	Network Data Structures
	Header
	Frame
	FrameQueue
	FrameQueueFrag
	Logical Address Validation

	Shared Networking API
	Order of Inheritence
	Accessible RF24 API
	External Systems API

	RF24Network API
	RF24NetworkRoutingOnly class
	RF24Network class
	Basic API
	Advanced API
	Configuration API

	RF24Mesh API
	RF24MeshNoMaster class
	RF24Mesh class
	Basic API
	Advanced API

	Network Constants
	Sending Behavior Types
	Reserved Network Message Types
	Generic Network constants
	Message Fragment Types
	RF24Mesh specific constants

	Troubleshooting info
	Common Problems
	Attribute dependency
	FIFO Capacity
	Pipes vs Addresses vs Channels
	Pipes
	Addresses
	Channels

	Settings that must Match
	Settings that do not need to Match


	About the lite version
	Testing nRF24L01+PA+LNA module
	The Setup
	Results (ordered by pa_level settings)
	Conclusion


	Getting Started
	Introduction
	Features currently supported
	Dependencies
	Installing from PyPI

	Pinout
	Using The Examples
	For an interactive REPL
	For CircuitPython devices
	For CPython in Linux

	What to purchase
	Power Stability
	About the nRF24L01+PA+LNA modules
	Additional requirements for the PA/LNA modules

	nRF24L01(+) clones and counterfeits

	Contributing
	Future Project Ideas/Additions
	Sphinx documentation
	Install Graphviz
	Installing Sphinx necessities
	Building the documentation


	Site Index

	Index

