

    
      
          
            
  














[image: Open in Visual Studio Code]
 [https://vscode.dev/github/nRF24/CircuitPython_nRF24L01][image: Open in Gitpod]
 [https://gitpod.io/#https://github.com/2bndy5/CircuitPython_nRF24L01]
Getting Started


Introduction

This is a Circuitpython driver library for the nRF24L01(+) transceiver.

Originally this code was a Micropython module written by Damien P. George
& Peter Hinch which can still be found here [https://github.com/micropython/micropython/tree/master/drivers/nrf24l01]

The Micropython source has since been rewritten to expose all the nRF24L01’s
features and for Circuitpython compatible devices (including linux-based
SoC computers like the Raspberry Pi).
Modified by Brendan Doherty & Rhys Thomas.


	Authors: Damien P. George, Peter Hinch, Rhys Thomas, Brendan Doherty





Features currently supported


	Change the address’s length (can be 3 to 5 bytes long)


	Dynamically sized payloads (max 32 bytes each) or statically sized payloads


	Automatic responding acknowledgment (ACK) packets for verifying transmission success


	Append custom payloads to the acknowledgment (ACK) packets for instant bi-directional communication


	Mark a single payload for no acknowledgment (ACK) from the receiving nRF24L01 (see ask_no_ack
parameter for send() and write() functions)


	Invoke the “re-use the same payload” feature (for manually re-transmitting failed transmissions that
remain in the TX FIFO buffer)


	Multiple payload transmissions with one function call (see documentation on the
send() function and try out the
Stream example)


	Context manager compatible for easily switching between different radio configurations
using The with statement [https://docs.python.org/3/reference/compound_stmts.html#with] blocks (not available in rf24_lite.py version)


	Configure the interrupt (IRQ) pin to trigger (active low) on received, sent, and/or
failed transmissions (these 3 events control 1 IRQ pin). There’s also virtual
representations of these interrupt events available (see irq_dr, irq_ds, & irq_df attributes)


	Invoke sleep mode (AKA power down mode) for ultra-low current consumption


	cyclic redundancy checking (CRC) up to 2 bytes long


	Adjust the nRF24L01’s builtin automatic re-transmit feature’s parameters (arc: number
of attempts, ard: delay between attempts)


	Adjust the nRF24L01’s frequency channel (2.4 - 2.525 GHz)


	Adjust the nRF24L01’s power amplifier level (0, -6, -12, or -18 dBm)


	Adjust the nRF24L01’s RF data rate (250kbps, 1Mbps, or 2Mbps)


	An nRF24L01 driven by this library can communicate with a nRF24L01 on an Arduino driven by the
TMRh20 RF24 library [http://tmrh20.github.io/RF24/].


	fake BLE module for sending BLE beacon advertisements from the nRF24L01 as outlined by
Dmitry Grinberg in his write-up (including C source code) [http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery].


	MulticeiverTM mode (up to 6 TX nRF24L01 “talking” to 1 RX nRF24L01 simultaneously).
See the Multiceiver Example


	Networking capability that allows up to 781 transceivers to interact with each other.


	This does not mean the radio can connect to WiFi. The networking implementation is a
custom protocol ported from TMRh20’s RF24Network & RF24Mesh libraries.










Dependencies

This driver depends on:


	Adafruit CircuitPython Firmware [https://circuitpython.org/downloads] or the
Adafruit_Blinka library [https://github.com/adafruit/Adafruit_Blinka] for Linux
SoC boards like Raspberry Pi


	adafruit_bus_device [https://docs.circuitpython.org/en/latest/shared-bindings/adafruit_bus_device/index.html#module-adafruit_bus_device] (specifically the SPIDevice class)


Tip

Use CircuitPython v6.3.0 or newer because faster SPI execution yields
faster transmissions.





	The SpiDev [https://pypi.org/project/spidev/] module is a C-extension that executes
SPI transactions faster than Adafruit’s PureIO library (a dependency of the
Adafruit_Blinka library [https://github.com/adafruit/Adafruit_Blinka]).




The adafruit_bus_device [https://docs.circuitpython.org/en/latest/shared-bindings/adafruit_bus_device/index.html#module-adafruit_bus_device], Adafruit_Blinka library [https://github.com/adafruit/Adafruit_Blinka],
and SpiDev [https://pypi.org/project/spidev/] libraries
are installed automatically on Linux when installing this library.


New in version 2.1.0: Added support for the SpiDev [https://pypi.org/project/spidev/] module




Important

This library supports Python 3.7 or newer because it uses the function
time.monotonic_ns() [https://docs.python.org/3/library/time.html#time.monotonic_ns] which returns an arbitrary time “counter” as an int [https://docs.python.org/3/library/functions.html#int] of
nanoseconds. CircuitPython firmware also supports time.monotonic_ns() [https://docs.python.org/3/library/time.html#time.monotonic_ns].





Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/circuitpython-nrf24l01/]. To install for current user:

pip3 install circuitpython-nrf24l01





To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install circuitpython-nrf24l01








Pinout

[image: _images/198c91ca675849ebacbcb17285f0b2dd7ea32d3c.png]
 [https://lastminuteengineers.com/nrf24l01-arduino-wireless-communication/#nrf24l01-transceiver-module-pinout]The nRF24L01 is controlled through SPI so there are 3 pins (SCK, MOSI, & MISO) that can only be
connected to their counterparts on the MCU (microcontroller unit). The other 2 essential pins
(CE & CSN) can be connected to any digital output pins. Lastly, the only optional GPIO pin on the
nRF24L01 is the IRQ (interrupt; a digital output that’s active when low) pin and is only connected
to the MCU via a digital input pin during the interrupt example.


The pins used in this library’s examples.






	nRF24L01

	ItsyBitsy M4

	Raspberry Pi





	GND

	GND

	GND



	VCC

	3.3V

	3V



	CE

	D4

	
	GPIO4 if using CircuitPython’s SPIDevice


	GPIO22 if using the SpiDev [https://pypi.org/project/spidev/] module







	CSN

	D5

	
	GPIO5 if using CircuitPython’s SPIDevice


	GPIO8 (CE0) if using the SpiDev [https://pypi.org/project/spidev/] module







	SCK

	SCK

	GPIO11 (SCK)



	MOSI

	MOSI

	GPIO10 (MOSI)



	MISO

	MISO

	GPIO9 (MISO)



	IRQ

	D12

	GPIO12







Tip

User reports and personal experiences have improved results if there is a capacitor of
100 microfarads (+ another optional 0.1 microfarads capacitor for added stability) connected
in parallel to the VCC and GND pins.




Important

The nRF24L01’s VCC pin is not 5V compliant. All other nRF24L01 pins should be 5V compliant,
but it is safer to assume they are not.





Using The Examples

See examples for testing certain features of this the library.
The examples were developed and tested on both Raspberry Pi and ItsyBitsy M4.
Pins have been hard coded in the examples for the corresponding device, so please adjust these
accordingly to your circuitpython device if necessary.


For an interactive REPL

All examples can be imported from within an interactive python REPL.


	Make sure the examples are located in the current working directory.
On CircuitPython devices, this will be the root directory of the CIRCUITPY drive.


	Import everything from the desired example. The following code snippet demonstrates running the
Simple Test example

>>> from nrf24l01_simple_test import *
Which radio is this? Enter '0' or '1'. Defaults to '0'
    nRF24L01 Simple test.
    Run slave() on receiver
    Run master() on transmitter
>>> master()
Transmission successful! Time to Transmit: 3906.25 us. Sent: 0.0
Transmission successful! Time to Transmit: 2929.69 us. Sent: 0.01
Transmission successful! Time to Transmit: 2929.69 us. Sent: 0.02
Transmission successful! Time to Transmit: 3906.25 us. Sent: 0.03
Transmission successful! Time to Transmit: 4882.81 us. Sent: 0.04











For CircuitPython devices


	Copy the examples to the root directory of the CIRCUITPY device.


	Rename the desired example file to main.py.


	If the REPL is not already running, then the example should start automatically.
If the REPL is already running in interactive mode, then press ctrl+d to do a
soft reset, and the example should start automatically.






For CPython in Linux


	Clone the library repository, then navigate to the repository’s example directory.

git clone https://github.com/2bndy5/CircuitPython_nRF24L01.git
cd CircuitPython_nRF24L01/examples







	Run the example as a normal python program

python3 nrf24l01_simple_test.py












What to purchase

See the following links to Sparkfun or just google “nRF24L01+”.


	2.4GHz Transceiver IC - nRF24L01+ [https://www.sparkfun.com/products/690]


	SparkFun Transceiver Breakout - nRF24L01+ [https://www.sparkfun.com/products/691]


	SparkFun Transceiver Breakout - nRF24L01+ (RP-SMA) [https://www.sparkfun.com/products/705]




It is worth noting that you
generally want to buy more than 1 as you need 2 for testing – 1 to send & 1 to receive and
vise versa. This library has been tested on a cheaply bought 6 pack from Amazon.com, but don’t
take Amazon or eBay for granted! There are other wireless transceivers that are NOT compatible
with this library. For instance, the esp8266-01 (also sold in packs) is NOT compatible with
this library, but looks very similar to the nRF24L01+ and could lead to an accidental purchase.


See also

Beware, there are also nrf24l01(+) clones and counterfeits that may not work the same.




Power Stability

If you’re not using a dedicated 3V regulator to supply power to the nRF24L01,
then adding capacitor(s) (100 µF + an optional 0.1µF) in parallel (& as close
as possible) to the VCC and GND pins is highly recommended. Stabilizing the power
input provides significant performance increases. More finite details about the
nRF24L01 are available from the datasheet (referenced here in the documentation as the
nRF24L01+ Specification Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf])



About the nRF24L01+PA+LNA modules

You may find variants of the nRF24L01 transceiver that are marketed as “nRF24L01+PA+LNA”.
These modules are distinct in the fact that they come with a detachable (SMA-type) antenna.
They employ additional circuitry with the antenna for enhanced Power Amplification (PA) and
Low Noise Amplification (LNA) features. While they boast greater range with the same
functionality, they are subject to a couple lesser known (and lesser advertised) drawbacks:


Additional requirements for the PA/LNA modules

These requirements are dependent on what manufacturer produced the radio module.


	Needs a stronger power source. Below is a chart of advertised current requirements that many MCU
boards’ 3V regulators may not be able to provide (after supplying power to internal
components).







	Specification

	Value





	Emission mode current(peak)

	115 mA



	Receive Mode current(peak)

	45 mA



	Power-down mode current

	4.2 µA







Important

These values may be different depending on what manufacturer produced the radio module.
Please consult the manufacturer’s specifications or datasheet.





	Needs shielding from electromagnetic interference. Shielding usually works best when
it has a path to ground (GND pin), but this connection to the GND pin is not required.





See also

I have documented Testing nRF24L01+PA+LNA module






nRF24L01(+) clones and counterfeits

This library does not directly support clones/counterfeits as there is no way for the library
to differentiate between an actual nRF24L01+ and a clone/counterfeit. To determine if your
purchase is a counterfeit, please contact the retailer you purchased from (also reading this
article and its links might help [https://hackaday.com/2015/02/23/nordic-nrf24l01-real-vs-fake/]). The most notable clone is the Si24R1 [https://lcsc.com/product-detail/RF-Transceiver-ICs_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.html]. I could not find
the Si24R1 datasheet [https://datasheet.lcsc.com/szlcsc/1811142211_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.pdf] in english. Troubleshooting
the SI24R1 may require replacing the onboard antenna with a wire [https://forum.mysensors.org/post/96871]. Furthermore, the Si24R1 has different power
amplifier options as noted in the RF_PWR section (bits 0 through 2) of the RF_SETUP register
(address 0x06) of the datasheet [https://datasheet.lcsc.com/szlcsc/1811142211_Nanjing-Zhongke-Microelectronics-Si24R1_C14436.pdf#%5B%7B%22num%22%3A329%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C0%2C755%2Cnull%5D].
While the options’ values differ from those identified by this library’s API, the
underlying commands to configure those options are almost identical to the nRF24L01.
The Si24R1 is also famous for not supporting auto_ack
correctly because the designers “cloned” a typo from the 1st version of the nRF24L01
(non-plus) datasheet into the Si24R1 firmware. Other known clones include the bk242x (also known as
RFM7x).


See also

Read this article [https://ncrmnt.org/2021/01/03/nrf24l01-fixing-the-magic-finger-problem/]
about using clones with missing capacitors (includes pictures).






Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/2bndy5/CircuitPython_nRF24L01/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming. To contribute, all you need to do is fork this repository [https://github.com/2bndy5/CircuitPython_nRF24L01.git], develop your idea(s) and submit a pull request when stable. To initiate a discussion of idea(s), you need only open an issue on the aforementioned repository (doesn’t have to be a bug report).


Future Project Ideas/Additions

The following are only ideas; they are not currently supported by this circuitpython library.


	There’s a few blog posts by Nerd Ralph demonstrating how to use the nRF24L01 via 2 or 3
pins [http://nerdralph.blogspot.com/2015/05/nrf24l01-control-with-2-mcu-pins-using.html] (uses custom bitbanging SPI functions and an external circuit involving a
resistor and a capacitor)


	TCI/IP OSI layer, maybe something like TMRh20’s RF24Ethernet [http://nRF24.github.io/RF24Ethernet/]


	implement the Gazelle-based protocol used by the BBC micro-bit (makecode.com’s radio
blocks [https://makecode.microbit.org/reference/radio]) Additional resources can be found at
the MicroPython firmware source code [https://github.com/bbcmicrobit/micropython/blob/master/source/microbit/modradio.cpp]
and its related documentation [https://microbit-micropython.readthedocs.io/en/latest/radio.html].






Sphinx documentation

Sphinx and Graphviz are used to build the documentation based on rST files and comments in the code.


Install Graphviz

On Windows, installing Graphviz library is done differently. Check out the
Graphviz downloads page [https://graphviz.org/download/]. Be sure that the graphviz/bin
directory is in the PATH environment variable (there’s an option in the installer for this).
After Graphviz is installed, reboot the PC so the updated PATH environment variable takes affect.

On Linux, just run:

sudo apt-get install graphviz







Installing Sphinx necessities

First, install dependencies (feel free to reuse the virtual environment from
above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-immaterial







Building the documentation

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build





This will output the documentation to docs/_build directory. Open the index.html in your
browser to view them. It will also (due to -W) error out on any warning like the Github action,
Build CI, does. This is a good way to locally verify it will pass.





Site Index

Index





            

          

      

      

    

  

    
      
          
            
  
Examples


nRF24L01 Features


Simple test


Changed in version 2.0.0: 


	uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.


	transmits an incrementing float [https://docs.python.org/3/library/functions.html#float] instead of an int [https://docs.python.org/3/library/functions.html#int]






Ensure your device works with this simple test.


examples/nrf24l01_simple_test.py

	  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

	import time
import struct
import board
from digitalio import DigitalInOut

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# addresses needs to be in a buffer protocol object (bytearray)
address = [b"1Node", b"2Node"]

# to use different addresses on a pair of radios, we need a variable to
# uniquely identify which address this radio will use to transmit
# 0 uses address[0] to transmit, 1 uses address[1] to transmit
radio_number = bool(
    int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
)

# set TX address of RX node into the TX pipe
nrf.open_tx_pipe(address[radio_number])  # always uses pipe 0

# set RX address of TX node into an RX pipe
nrf.open_rx_pipe(1, address[not radio_number])  # using pipe 1

# using the python keyword global is bad practice. Instead we'll use a 1 item
# list to store our float number for the payloads sent
payload = [0.0]

# uncomment the following 3 lines for compatibility with TMRh20 library
# nrf.allow_ask_no_ack = False
# nrf.dynamic_payloads = False
# nrf.payload_length = 4


def master(count=5):  # count = 5 will only transmit 5 packets
    """Transmits an incrementing integer every second"""
    nrf.listen = False  # ensures the nRF24L01 is in TX mode

    while count:
        # use struct.pack to structure your data
        # into a usable payload
        buffer = struct.pack("<f", payload[0])
        # "<f" means a single little endian (4 byte) float value.
        start_timer = time.monotonic_ns()  # start timer
        result = nrf.send(buffer)
        end_timer = time.monotonic_ns()  # end timer
        if not result:
            print("send() failed or timed out")
        else:
            print(
                "Transmission successful! Time to Transmit:",
                "{} us. Sent: {}".format((end_timer - start_timer) / 1000, payload[0])
            )
            payload[0] += 0.01
        time.sleep(1)
        count -= 1


def slave(timeout=6):
    """Polls the radio and prints the received value. This method expires
    after 6 seconds of no received transmission"""
    nrf.listen = True  # put radio into RX mode and power up

    start = time.monotonic()
    while (time.monotonic() - start) < timeout:
        if nrf.available():
            # grab information about the received payload
            payload_size, pipe_number = (nrf.any(), nrf.pipe)
            # fetch 1 payload from RX FIFO
            buffer = nrf.read()  # also clears nrf.irq_dr status flag
            # expecting a little endian float, thus the format string "<f"
            # buffer[:4] truncates padded 0s if dynamic payloads are disabled
            payload[0] = struct.unpack("<f", buffer[:4])[0]
            # print details about the received packet
            print(
                "Received {} bytes on pipe {}: {}".format(
                    payload_size, pipe_number, payload[0]
                )
            )
            start = time.monotonic()

    # recommended behavior is to keep in TX mode while idle
    nrf.listen = False  # put the nRF24L01 is in TX mode














ACK Payloads Example


Changed in version 2.0.0: 


	uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.


	changed payloads to show use of c-strings’ NULL terminating character.






This is a test to show how to use custom acknowledgment payloads.


See also

More details are found in the documentation on ack and load_ack().




examples/nrf24l01_ack_payload_test.py

	  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

	import time
import board
from digitalio import DigitalInOut

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# the custom ACK payload feature is disabled by default
# NOTE the the custom ACK payload feature will be enabled
# automatically when you call load_ack() passing:
# a buffer protocol object (bytearray) of
# length ranging [1,32]. And pipe number always needs
# to be an int ranging [0, 5]

# to enable the custom ACK payload feature
nrf.ack = True  # False disables again

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# addresses needs to be in a buffer protocol object (bytearray)
address = [b"1Node", b"2Node"]

# to use different addresses on a pair of radios, we need a variable to
# uniquely identify which address this radio will use to transmit
# 0 uses address[0] to transmit, 1 uses address[1] to transmit
radio_number = bool(
    int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
)

# set TX address of RX node into the TX pipe
nrf.open_tx_pipe(address[radio_number])  # always uses pipe 0

# set RX address of TX node into an RX pipe
nrf.open_rx_pipe(1, address[not radio_number])  # using pipe 1

# using the python keyword global is bad practice. Instead we'll use a 1 item
# list to store our integer number for the payloads' counter
counter = [0]


def master(count=5):  # count = 5 will only transmit 5 packets
    """Transmits a payload every second and prints the ACK payload"""
    nrf.listen = False  # put radio in TX mode

    while count:
        # construct a payload to send
        # add b"\0" as a c-string NULL terminating char
        buffer = b"Hello \0" + bytes([counter[0]])
        start_timer = time.monotonic_ns()  # start timer
        result = nrf.send(buffer)  # save the response (ACK payload)
        end_timer = time.monotonic_ns()  # stop timer
        if result:
            # print the received ACK that was automatically
            # fetched and saved to "result" via send()
            # print timer results upon transmission success
            print(
                "Transmission successful! Time to transmit:",
                int((end_timer - start_timer) / 1000),
                "us. Sent: {}{}".format(buffer[:6].decode("utf-8"), counter[0]),
                end=" ",
            )
            if isinstance(result, bool):
                print("Received an empty ACK packet")
            else:
                # result[:6] truncates c-string NULL termiating char
                # received counter is a unsigned byte, thus result[7:8][0]
                print(
                    "Received: {}{}".format(result[:6].decode("utf-8"), result[7:8][0])
                )
            counter[0] += 1  # increment payload counter
        elif not result:
            print("send() failed or timed out")
        time.sleep(1)  # let the RX node prepare a new ACK payload
        count -= 1


def slave(timeout=6):
    """Prints the received value and sends an ACK payload"""
    nrf.listen = True  # put radio into RX mode, power it up

    # setup the first transmission's ACK payload
    # add b"\0" as a c-string NULL terminating char
    buffer = b"World \0" + bytes([counter[0]])
    # we must set the ACK payload data and corresponding
    # pipe number [0, 5]. We'll be acknowledging pipe 1
    nrf.load_ack(buffer, 1)  # load ACK for first response

    start = time.monotonic()  # start timer
    while (time.monotonic() - start) < timeout:
        if nrf.available():
            # grab information about the received payload
            length, pipe_number = (nrf.any(), nrf.pipe)
            # retreive the received packet's payload
            received = nrf.read()
            # increment counter from received payload
            # received counter is a unsigned byte, thus result[7:8][0]
            counter[0] = received[7:8][0] + 1
            # the [:6] truncates the c-string NULL termiating char
            print(
                "Received {} bytes on pipe {}:".format(length, pipe_number),
                "{}{}".format(received[:6].decode("utf-8"), received[7:8][0]),
                "Sent: {}{}".format(buffer[:6].decode("utf-8"), buffer[7:8][0]),
            )
            start = time.monotonic()  # reset timer
            buffer = b"World \0" + bytes([counter[0]])  # build new ACK
            nrf.load_ack(buffer, 1)  # load ACK for next response

    # recommended behavior is to keep in TX mode while idle
    nrf.listen = False  # put radio in TX mode
    nrf.flush_tx()  # flush any ACK payloads that remain














Multiceiver Example


New in version 1.2.2.




Changed in version 2.0.0: no longer uses ACK payloads for responding to node 1.



This example shows how use a group of 6 nRF24L01 transceivers to transmit to 1 nRF24L01
transceiver. This technique is called “Multiceiver” in the nRF24L01 Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1104474]


Note

This example follows the diagram illustrated in
figure 12 of section 7.7 of the nRF24L01 Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#page=39]
Please note that if auto_ack (on the base station) and arc (on the
transmitting nodes) are disabled, then
figure 10 of section 7.7 of the nRF24L01 Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1104474]
would be a better illustration.




Hint

A paraphrased note from the the nRF24L01 Specifications Sheet:


Only when a data pipe receives a complete packet can other data pipes begin
to receive data. When multiple [nRF24L01]s are transmitting to [one nRF24L01],
the ard can be used to skew the auto retransmission so that they only block
each other once.




This basically means that it might help packets get received if the ard attribute
is set to various values among multiple transmitting nRF24L01 transceivers.




examples/nrf24l01_multiceiver_test.py

	  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112

	import time
import struct
import board
from digitalio import DigitalInOut

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# setup the addresses for all transmitting nRF24L01 nodes
addresses = [
    b"\x78" * 5,
    b"\xF1\xB6\xB5\xB4\xB3",
    b"\xCD\xB6\xB5\xB4\xB3",
    b"\xA3\xB6\xB5\xB4\xB3",
    b"\x0F\xB6\xB5\xB4\xB3",
    b"\x05\xB6\xB5\xB4\xB3",
]

# uncomment the following 3 lines for compatibility with TMRh20 library
# nrf.allow_ask_no_ack = False
# nrf.dynamic_payloads = False
# nrf.payload_length = 8


def base(timeout=10):
    """Use the nRF24L01 as a base station for listening to all nodes"""
    # write the addresses to all pipes.
    for pipe_n, addr in enumerate(addresses):
        nrf.open_rx_pipe(pipe_n, addr)
    nrf.listen = True  # put base station into RX mode
    start_timer = time.monotonic()  # start timer
    while time.monotonic() - start_timer < timeout:
        while not nrf.fifo(False, True):  # keep RX FIFO empty for reception
            # show the pipe number that received the payload
            # NOTE read() clears the pipe number and payload length data
            print("Received", nrf.any(), "on pipe", nrf.pipe, end=" ")
            node_id, payload_id = struct.unpack("<ii", nrf.read())
            print("from node {}. PayloadID: {}".format(node_id, payload_id))
            start_timer = time.monotonic()  # reset timer with every payload
    nrf.listen = False


def node(node_number=0, count=6):
    """start transmitting to the base station.

    :param int node_number: the node's identifying index (from the
        the `addresses` list)
    :param int count: the number of times that the node will transmit
        to the base station.
    """
    nrf.listen = False
    # set the TX address to the address of the base station.
    nrf.open_tx_pipe(addresses[node_number])
    counter = 0
    # use the node_number to identify where the payload came from
    while counter < count:
        counter += 1
        # payloads will include the node_number and a payload ID character
        payload = struct.pack("<ii", node_number, counter)
        # show something to see it isn't frozen
        start_timer = time.monotonic_ns()
        report = nrf.send(payload)
        end_timer = time.monotonic_ns()
        # show something to see it isn't frozen
        if report:
            print(
                "Transmission of payloadID {} as node {} successfull!".format(
                    counter, node_number
                ),
                "Transmission time: {} us".format(int((end_timer - start_timer) / 1000))
            )
        else:
            print("Transmission failed or timed out")
        time.sleep(0.5)  # slow down the test for readability














Scanner Example


New in version 2.0.0.



This example simply scans the entire RF frequency (2.4 GHz to 2.525 GHz)
and outputs a vertical graph of how many signals (per
channel) were detected. This example
can be used to find a frequency with the least ambient interference from other
radio-emitting sources (i.e. WiFi, Bluetooth, or etc).


examples/nrf24l01_scanner_test.py

	  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

	import time
import board
from digitalio import DigitalInOut

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24, address_repr

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# turn off RX features specific to the nRF24L01 module
nrf.auto_ack = False
nrf.dynamic_payloads = False
nrf.crc = 0
nrf.arc = 0
nrf.allow_ask_no_ack = False

# use reverse engineering tactics for a better "snapshot"
nrf.address_length = 2
nrf.open_rx_pipe(1, b"\0\x55")
nrf.open_rx_pipe(0, b"\0\xAA")


def scan(timeout=30):
    """Traverse the spectrum of accessible frequencies and print any detection
    of ambient signals.

    :param int timeout: The number of seconds in which scanning is performed.
    """
    # print the vertical header of channel numbers
    print("0" * 100 + "1" * 26)
    for i in range(13):
        print(str(i % 10) * (10 if i < 12 else 6), sep="", end="")
    print("")  # endl
    for i in range(126):
        print(str(i % 10), sep="", end="")
    print("\n" + "~" * 126)

    signals = [0] * 126  # store the signal count for each channel
    curr_channel = 0
    start_timer = time.monotonic()  # start the timer
    while time.monotonic() - start_timer < timeout:
        nrf.channel = curr_channel
        if nrf.available():
            nrf.flush_rx()  # flush the RX FIFO because it asserts the RPD flag
        nrf.listen = 1  # start a RX session
        time.sleep(0.00013)  # wait 130 microseconds
        signals[curr_channel] += nrf.rpd  # if interference is present
        nrf.listen = 0  # end the RX session
        curr_channel = curr_channel + 1 if curr_channel < 125 else 0

        # output the signal counts per channel
        sig_cnt = signals[curr_channel]
        print(
            ("%X" % min(15, sig_cnt)) if sig_cnt else "-",
            sep="",
            end="" if curr_channel < 125 else "\r",
        )
    # finish printing results and end with a new line
    while curr_channel < len(signals) - 1:
        curr_channel += 1
        sig_cnt = signals[curr_channel]
        print(("%X" % min(15, sig_cnt)) if sig_cnt else "-", sep="", end="")
    print("")


def noise(timeout=1, channel=None):
    """print a stream of detected noise for duration of time.

    :param int timeout: The number of seconds to scan for ambient noise.
    :param int channel: The specific channel to focus on. If not provided, then the
        radio's current setting is used.
    """
    if channel is not None:
        nrf.channel = channel
    nrf.listen = True
    timeout += time.monotonic()
    while time.monotonic() < timeout:
        signal = nrf.read()
        if signal:
            print(address_repr(signal, False, " "))
    nrf.listen = False
    while not nrf.fifo(False, True):
        # dump the left overs in the RX FIFO
        print(address_repr(nrf.read(), False, " "))













Reading the scanner output


Hint

Make sure the terminal window used to run the scanner example is expanded
to fit 125 characters. Otherwise the output will look weird.



The output of the scanner example is supposed to be read vertically (as columns).
So, the following



000

111

789

~~~

13-






should be interpreted as


	1 signal detected on channel 017


	3 signals detected on channel 018


	no signal (-) detected on channel 019




The ~ is just a divider between the vertical header and the signal counts.




IRQ Pin Example


Changed in version 1.2.0: uses ACK payloads to trigger all 3 IRQ events.




Changed in version 2.0.0: uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.



This is a test to show how to use nRF24L01’s interrupt pin using the non-blocking
write(). Also the ack attribute is enabled to trigger the irq_dr event when
the master node receives ACK payloads. Simply put, this example is the most advanced
example script (in this library), and it runs very quickly.


examples/nrf24l01_interrupt_test.py

	  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

	import time
import board
import digitalio

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24

# select your digital input pin that's connected to the IRQ pin on the nRF4L01
irq_pin = digitalio.DigitalInOut(board.D12)
irq_pin.switch_to_input()  # make sure its an input object
# change these (digital output) pins accordingly
CE_PIN = digitalio.DigitalInOut(board.D4)
CSN_PIN = digitalio.DigitalInOut(board.D5)

# using board.SPI() automatically selects the MCU's
# available SPI pins, board.SCK, board.MOSI, board.MISO
SPI_BUS = board.SPI()  # init spi bus object

# we'll be using the dynamic payload size feature (enabled by default)
# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)

# this example uses the ACK payload to trigger the IRQ pin active for
# the "on data received" event
nrf.ack = True  # enable ACK payloads

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# address needs to be in a buffer protocol object (bytearray is preferred)
address = [b"1Node", b"2Node"]

# to use different addresses on a pair of radios, we need a variable to
# uniquely identify which address this radio will use to transmit
# 0 uses address[0] to transmit, 1 uses address[1] to transmit
radio_number = bool(
    int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
)

# set TX address of RX node into the TX pipe
nrf.open_tx_pipe(address[radio_number])  # always uses pipe 0

# set RX address of TX node into an RX pipe
nrf.open_rx_pipe(1, address[not radio_number])  # using pipe 1


def _ping_and_prompt():
    """transmit 1 payload, wait till irq_pin goes active, print IRQ status
    flags."""
    nrf.ce_pin = 1  # tell the nRF24L01 to prepare sending a single packet
    time.sleep(0.00001)  # mandatory 10 microsecond pulse starts transmission
    nrf.ce_pin = 0  # end 10 us pulse; use only 1 buffer from TX FIFO
    while irq_pin.value:  # IRQ pin is active when LOW
        pass
    print("IRQ pin went active LOW.")
    nrf.update()  # update irq_d? status flags
    print(
        "\tirq_ds: {}, irq_dr: {}, irq_df: {}".format(
            nrf.irq_ds, nrf.irq_dr, nrf.irq_df
        )
    )


def master():
    """Transmits 3 times: successfully receive ACK payload first, successfully
    transmit on second, and intentionally fail transmit on the third"""
    nrf.listen = False  # ensures the nRF24L01 is in TX mode
    # NOTE nrf.write() internally calls nrf.clear_status_flags() first

    # load 2 buffers into the TX FIFO; write_only=True leaves CE pin LOW
    nrf.write(b"Ping ", write_only=True)
    nrf.write(b"Pong ", write_only=True)

    # on data ready test
    print("\nConfiguring IRQ pin to only ignore 'on data sent' event")
    nrf.interrupt_config(data_sent=False)
    print("    Pinging slave node for an ACK payload...", end=" ")
    _ping_and_prompt()  # CE pin is managed by this function
    print("\t\"on data ready\" event test {}successful".format("un" * nrf.irq_dr))

    # on data sent test
    print("\nConfiguring IRQ pin to only ignore 'on data ready' event")
    nrf.interrupt_config(data_recv=False)
    print("    Pinging slave node again...             ", end=" ")
    _ping_and_prompt()  # CE pin is managed by this function
    print("\t\"on data sent\" event test {}successful".format("un" * nrf.irq_ds))

    # trigger slave node to exit by filling the slave node's RX FIFO
    print("\nSending one extra payload to fill RX FIFO on slave node.")
    if nrf.send(b"Radio", send_only=True):
        # when send_only parameter is True, send() ignores RX FIFO usage
        if nrf.fifo(False, False):  # is RX FIFO full?
            print("Slave node should not be listening anymore.")
        else:
            print("transmission succeeded, but slave node might still be listening")
    else:
        print("Slave node was unresponsive.")

    # on data fail test
    print("\nConfiguring IRQ pin to go active for all events.")
    nrf.interrupt_config()
    print("    Sending a ping to inactive slave node...", end=" ")
    nrf.flush_tx()  # just in case any previous tests failed
    nrf.write(b"Dummy", write_only=True)  # CE pin is left LOW
    _ping_and_prompt()  # CE pin is managed by this function
    print("\t\"on data failed\" event test {}successful".format("un" * nrf.irq_df))
    nrf.flush_tx()  # flush artifact payload in TX FIFO from last test
    # all 3 ACK payloads received were 4 bytes each, and RX FIFO is full
    # so, fetching 12 bytes from the RX FIFO also flushes RX FIFO
    print("\nComplete RX FIFO:", nrf.read(12))


def slave(timeout=6):  # will listen for 6 seconds before timing out
    """Only listen for 3 payload from the master node"""
    # setup radio to receive pings, fill TX FIFO with ACK payloads
    nrf.load_ack(b"Yak ", 1)
    nrf.load_ack(b"Back", 1)
    nrf.load_ack(b" ACK", 1)
    nrf.listen = True  # start listening & clear irq_dr flag
    start_timer = time.monotonic()  # start timer now
    while not nrf.fifo(0, 0) and time.monotonic() - start_timer < timeout:
        # if RX FIFO is not full and timeout is not reached, then keep going
        pass
    nrf.listen = False  # put nRF24L01 in Standby-I mode when idling
    if not nrf.fifo(False, True):  # if RX FIFO is not empty
        # all 3 payloads received were 5 bytes each, and RX FIFO is full
        # so, fetching 15 bytes from the RX FIFO also flushes RX FIFO
        print("Complete RX FIFO:", nrf.read(15))
    nrf.flush_tx()  # discard any pending ACK payloads















Library-Specific Features


Stream Example


Changed in version 1.2.3: added master_fifo() to demonstrate using full TX FIFO to stream data.




Changed in version 2.0.0: uses 2 addresses on pipes 1 & 0 to demonstrate proper addressing convention.



This is a test to show how to stream data. The master() uses the send()
function to transmit multiple payloads with 1 function call. However
master() only uses 1 level of the nRF24L01’s TX FIFO. An alternate function,
called master_fifo() uses all 3 levels of the nRF24L01’s TX FIFO to stream
data, but it uses the write() function to do so.


examples/nrf24l01_stream_test.py

	  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

	import time
import board
from digitalio import DigitalInOut

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# addresses needs to be in a buffer protocol object (bytearray)
address = [b"1Node", b"2Node"]

# to use different addresses on a pair of radios, we need a variable to
# uniquely identify which address this radio will use to transmit
# 0 uses address[0] to transmit, 1 uses address[1] to transmit
radio_number = bool(
    int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
)

# set TX address of RX node into the TX pipe
nrf.open_tx_pipe(address[radio_number])  # always uses pipe 0

# set RX address of TX node into an RX pipe
nrf.open_rx_pipe(1, address[not radio_number])  # using pipe 1

# uncomment the following 2 lines for compatibility with TMRh20 library
# nrf.allow_ask_no_ack = False
nrf.dynamic_payloads = False


def make_buffers(size=32):
    """return a list of payloads"""
    buffers = []
    # we'll use `size` for the number of payloads in the list and the
    # payloads' length
    for i in range(size):
        # prefix payload with a sequential letter to indicate which
        # payloads were lost (if any)
        buff = bytes([i + (65 if 0 <= i < 26 else 71)])
        for j in range(size - 1):
            char = j >= (size - 1) / 2 + abs((size - 1) / 2 - i)
            char |= j < (size - 1) / 2 - abs((size - 1) / 2 - i)
            buff += bytes([char + 48])
        buffers.append(buff)
        del buff
    return buffers


def master(count=1, size=32):  # count = 5 will transmit the list 5 times
    """Transmits multiple payloads using `RF24.send()` and `RF24.resend()`."""
    buffers = make_buffers(size)  # make a list of payloads
    nrf.listen = False  # ensures the nRF24L01 is in TX mode
    successful = 0  # keep track of success rate
    for _ in range(count):
        start_timer = time.monotonic_ns()  # start timer
        # NOTE force_retry=2 internally invokes `RF24.resend()` 2 times at
        # most for payloads that fail to transmit.
        result = nrf.send(buffers, force_retry=2)  # result is a list
        end_timer = time.monotonic_ns()  # end timer
        print("Transmission took", (end_timer - start_timer) / 1000, "us")
        for r in result:  # tally the resulting success rate
            successful += 1 if r else 0
    print(
        "successfully sent {}%".format(successful / (size * count) * 100),
        "({}/{})".format(successful, size * count)
    )


def master_fifo(count=1, size=32):
    """Similar to the `master()` above except this function uses the full
    TX FIFO and `RF24.write()` instead of `RF24.send()`"""
    buf = make_buffers(size)  # make a list of payloads
    nrf.listen = False  # ensures the nRF24L01 is in TX mode
    for cnt in range(count):  # transmit the same payloads this many times
        nrf.flush_tx()  # clear the TX FIFO so we can use all 3 levels
        # NOTE the write_only parameter does not initiate sending
        buf_iter = 0  # iterator of payloads for the while loop
        failures = 0  # keep track of manual retries
        start_timer = time.monotonic_ns()  # start timer
        while buf_iter < size:  # cycle through all the payloads
            nrf.ce_pin = False
            while buf_iter < size and nrf.write(buf[buf_iter], write_only=1):
                # NOTE write() returns False if TX FIFO is already full
                buf_iter += 1  # increment iterator of payloads
            nrf.ce_pin = True
            while not nrf.fifo(True, True):  # updates irq_df flag
                if nrf.irq_df:
                    # reception failed; we need to reset the irq_rf flag
                    nrf.ce_pin = False  # fall back to Standby-I mode
                    failures += 1  # increment manual retries
                    nrf.clear_status_flags()  # clear the irq_df flag
                    if failures > 99 and buf_iter < 7 and cnt < 2:
                        # we need to prevent an infinite loop
                        print(
                            "Make sure slave() node is listening."
                            " Quiting master_fifo()"
                        )
                        buf_iter = size + 1  # be sure to exit the while loop
                        nrf.flush_tx()  # discard all payloads in TX FIFO
                    else:
                        nrf.ce_pin = True  # start re-transmitting
        nrf.ce_pin = False
        end_timer = time.monotonic_ns()  # end timer
        print(
            "Transmission took {} us".format((end_timer - start_timer) / 1000),
            "with {} failures detected.".format(failures)
        )


def slave(timeout=5):
    """Stops listening after a `timeout` with no response"""
    nrf.listen = True  # put radio into RX mode and power up
    count = 0  # keep track of the number of received payloads
    start_timer = time.monotonic()  # start timer
    while time.monotonic() < start_timer + timeout:
        if nrf.available():
            count += 1
            # retreive the received packet's payload
            buffer = nrf.read()  # clears flags & empties RX FIFO
            print("Received:", buffer,"-", count)
            start_timer = time.monotonic()  # reset timer on every RX payload

    # recommended behavior is to keep in TX mode while idle
    nrf.listen = False  # put the nRF24L01 is in TX mode














Context Example


Changed in version 1.2.0: demonstrates switching between FakeBLE object & RF24 object with the same nRF24L01



This is a test to show how to use The with statement [https://docs.python.org/3/reference/compound_stmts.html#with] blocks to manage multiple different nRF24L01 configurations on 1 transceiver.


examples/nrf24l01_context_test.py

	10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	from circuitpython_nrf24l01.rf24 import RF24
from circuitpython_nrf24l01.fake_ble import FakeBLE

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 objects on the spi bus object
# the first object will have all the features enabled
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# enable the option to use custom ACK payloads
nrf.ack = True
# set the static payload length to 8 bytes
nrf.payload_length = 8
# RF power amplifier is set to -18 dbm
nrf.pa_level = -18

# the second object has most features disabled/altered
ble = FakeBLE(SPI_BUS, CSN_PIN, CE_PIN)
# the IRQ pin is configured to only go active on "data fail"
# NOTE BLE operations prevent the IRQ pin going active on "data fail" events
ble.interrupt_config(data_recv=False, data_sent=False)
# using a channel 2
ble.channel = 2
# RF power amplifier is set to -12 dbm
ble.pa_level = -12

print("\nsettings configured by the nrf object")
with nrf:
    # only the first character gets written because it is on a pipe_number > 1
    nrf.open_rx_pipe(5, b"1Node")  # NOTE we do this inside the "with" block

    # display current settings of the nrf object
    nrf.print_details(True)  # True dumps pipe info

print("\nsettings configured by the ble object")
with ble as nerf:  # the "as nerf" part is optional
    nerf.print_details(1)

# if you examine the outputs from print_details() you'll see:
#   pipe 5 is opened using the nrf object, but closed using the ble object.
#   pipe 0 is closed using the nrf object, but opened using the ble object.
#   also notice the different addresses bound to the RX pipes
# this is because the "with" statements load the existing settings
# for the RF24 object specified after the word "with".

# NOTE it is not advised to manipulate separate RF24 objects outside of the
# "with" block; you will encounter bugs about configurations when doing so.
# Be sure to use 1 "with" block per RF24 object when instantiating multiple
# RF24 objects in your program.
# NOTE exiting a "with" block will always power down the nRF24L01
# NOTE upon instantiation, this library closes all RX pipes &
# extracts the TX/RX addresses from the nRF24L01 registers












Manual ACK Example


New in version 2.0.0: Previously, this example was strictly made for TMRh20’s RF24 library example
titled “GettingStarted_HandlingData.ino”. With the latest addition of new
examples to the TMRh20 RF24 library, this example was renamed from
“nrf24l01_2arduino_handling_data.py” and adapted for both this library and
TMRh20’s RF24 library.



This is a test to show how to use the library for acknowledgement (ACK) responses
without using the automatic ACK packets (like the ACK Payloads Example does).
Beware, that this technique is not faster and can be more prone to communication
failure. However, This technique has the advantage of using more updated information
in the responding payload as information in ACK payloads are always outdated by 1
transmission.


examples/nrf24l01_manual_ack_test.py

	  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

	import time
import board
from digitalio import DigitalInOut

# if running this on a ATSAMD21 M0 based board
# from circuitpython_nrf24l01.rf24_lite import RF24
from circuitpython_nrf24l01.rf24 import RF24

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)

# initialize the nRF24L01 on the spi bus object
nrf = RF24(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# addresses needs to be in a buffer protocol object (bytearray)
address = [b"1Node", b"2Node"]

# to use different addresses on a pair of radios, we need a variable to
# uniquely identify which address this radio will use to transmit
# 0 uses address[0] to transmit, 1 uses address[1] to transmit
radio_number = bool(
    int(input("Which radio is this? Enter '0' or '1'. Defaults to '0' ") or 0)
)

# set TX address of RX node into the TX pipe
nrf.open_tx_pipe(address[radio_number])  # always uses pipe 0

# set RX address of TX node into an RX pipe
nrf.open_rx_pipe(1, address[not radio_number])  # using pipe 1
# nrf.open_rx_pipe(2, address[radio_number])  # for getting responses on pipe 2

# using the python keyword global is bad practice. Instead we'll use a 1 item
# list to store our integer number for the payloads' counter
counter = [0]

# uncomment the following 3 lines for compatibility with TMRh20 library
# nrf.allow_ask_no_ack = False
# nrf.dynamic_payloads = False
# nrf.payload_length = 8


def master(count=5):  # count = 5 will only transmit 5 packets
    """Transmits an arbitrary unsigned long value every second"""
    nrf.listen = False  # ensures the nRF24L01 is in TX mode
    while count:
        # construct a payload to send
        # add b"\0" as a c-string NULL terminating char
        buffer = b"Hello \0" + bytes([counter[0]])
        start_timer = time.monotonic_ns()  # start timer
        result = nrf.send(buffer)  # save the response (ACK payload)
        if not result:
            print("send() failed or timed out")
        else:  # sent successful; listen for a response
            nrf.listen = True  # get radio ready to receive a response
            timeout = time.monotonic_ns() + 200000000  # set sentinel for timeout
            while not nrf.available() and time.monotonic_ns() < timeout:
                # this loop hangs for 200 ms or until response is received
                pass
            nrf.listen = False  # put the radio back in TX mode
            end_timer = time.monotonic_ns()  # stop timer
            print(
                "Transmission successful! Time to transmit:",
                int((end_timer - start_timer) / 1000),
                "us. Sent: {}{}".format(buffer[:6].decode("utf-8"), counter[0]),
                end=" ",
            )
            if nrf.pipe is None:  # is there a payload?
                # nrf.pipe is also updated using `nrf.listen = False`
                print("Received no response.")
            else:
                length = nrf.any()  # reset with read()
                pipe_number = nrf.pipe  # reset with read()
                received = nrf.read()  # grab the response
                # save new counter from response
                counter[0] = received[7:8][0]
                print(
                    "Received {} bytes with pipe {}:".format(length, pipe_number),
                    "{}{}".format(bytes(received[:6]).decode("utf-8"), counter[0]),
                )
        count -= 1
        # make example readable in REPL by slowing down transmissions
        time.sleep(1)


def slave(timeout=6):
    """Polls the radio and prints the received value. This method expires
    after 6 seconds of no received transmission"""
    nrf.listen = True  # put radio into RX mode and power up
    start_timer = time.monotonic()  # used as a timeout
    while (time.monotonic() - start_timer) < timeout:
        if nrf.available():
            length = nrf.any()  # grab payload length info
            pipe = nrf.pipe  # grab pipe number info
            received = nrf.read(length)  # clears info from any() and nrf.pipe
            # increment counter before sending it back in responding payload
            counter[0] = received[7:8][0] + 1
            nrf.listen = False  # put the radio in TX mode
            result = False
            ack_timeout = time.monotonic_ns() + 200000000
            while not result and time.monotonic_ns() < ack_timeout:
                # try to send reply for 200 milliseconds (at most)
                result = nrf.send(b"World \0" + bytes([counter[0]]))
            nrf.listen = True  # put the radio back in RX mode
            print(
                "Received {} on pipe {}:".format(length, pipe),
                "{}{}".format(bytes(received[:6]).decode("utf-8"), received[7:8][0]),
                end=" Sent: ",
            )
            if not result:
                print("Response failed or timed out")
            else:
                print("World", counter[0])
            start_timer = time.monotonic()  # reset timeout

    # recommended behavior is to keep in TX mode when in idle
    nrf.listen = False  # put the nRF24L01 in TX mode + Standby-I power state














Network Test


New in version 2.1.0.



The following network example is designed to be compatible with most of TMRh20’s C++
examples for the RF24Mesh and RF24Network libraries. However, due to some slight differences
this example prompts for user input which can cover a broader spectrum of usage scenarios.


examples/nrf24l01_network_test.py

	  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

	import time
import struct
import board
from digitalio import DigitalInOut
from circuitpython_nrf24l01.network.constants import MAX_FRAG_SIZE, NETWORK_DEFAULT_ADDR

IS_MESH = (
    input(
        "    nrf24l01_network_test example\n"
        "Would you like to run as a mesh network node (y/n)? Defaults to 'Y' "
    ) or "Y"
).upper().startswith("Y")


# to use different addresses on a set of radios, we need a variable to
# uniquely identify which address this radio will use
THIS_NODE = 0
print(
    "Remember, the master node always uses `0` as the node_address and node_id."
    "\nWhich node is this? Enter",
    end=" ",
)
if IS_MESH:
    # node_id must be less than 256
    THIS_NODE = int(input("a unique int. Defaults to '0' ") or "0") & 0xFF
else:
    # logical node_address is in octal
    THIS_NODE = int(input("an octal int. Defaults to '0' ") or "0", 8)

if IS_MESH:
    if THIS_NODE:  # if this is not a mesh network master node
        from circuitpython_nrf24l01.rf24_mesh import RF24MeshNoMaster as Network
    else:
        from circuitpython_nrf24l01.rf24_mesh import RF24Mesh as Network
    print("Using RF24Mesh{} class".format("" if not THIS_NODE else "NoMaster"))
else:
    from circuitpython_nrf24l01.rf24_network import RF24Network as Network

    # we need to construct frame headers for RF24Network.send()
    from circuitpython_nrf24l01.network.structs import RF24NetworkHeader

    # we need to construct entire frames for RF24Network.write() (not for this example)
    # from circuitpython_nrf24l01.network.structs import RF24NetworkFrame
    print("Using RF24Network class")

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize this node as the network
nrf = Network(SPI_BUS, CSN_PIN, CE_PIN, THIS_NODE)

# TMRh20 examples use channel 97 for RF24Mesh library
# TMRh20 examples use channel 90 for RF24Network library
nrf.channel = 90 + IS_MESH * 7

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceivers in close proximity
nrf.pa_level = -12

# using the python keyword global is bad practice. Instead we'll use a 1 item
# list to store our number of the payloads sent
packets_sent = [0]

if THIS_NODE:  # if this node is not the network master node
    if IS_MESH:  # mesh nodes need to bond with the master node
        print("Connecting to mesh network...", end=" ")

        # get this node's assigned address and connect to network
        if nrf.renew_address() is None:
            print("failed. Please try again manually with `nrf.renew_address()`")
        else:
            print("assigned address:", oct(nrf.node_address))
else:
    print("Acting as network master node.")


def idle(timeout: int = 30, strict_timeout: bool = False):
    """Listen for any payloads and print the transaction

    :param int timeout: The number of seconds to wait (with no transmission)
        until exiting function.
    :param bool strict_timeout: If set to True, then the timer is not reset when
        processing incoming traffic
    """
    print("idling for", timeout, "seconds")
    start_timer = time.monotonic()
    while (time.monotonic() - start_timer) < timeout:
        nrf.update()  # keep the network layer current
        while nrf.available():
            if not strict_timeout:
                start_timer = time.monotonic()  # reset timer
            frame = nrf.read()
            message_len = len(frame.message)
            print("Received payload", end=" ")
            # TMRh20 examples only use 1 or 2 long ints as small messages
            if message_len < MAX_FRAG_SIZE and message_len % 4 == 0:
                # if not a large fragmented message and multiple of 4 bytes
                fmt = "<" + "L" * int(message_len / 4)
                print(struct.unpack(fmt, bytes(frame.message)), end=" ")
            print(frame.header.to_string(), "length", message_len)


def emit(
    node: int = not THIS_NODE, frag: bool = False, count: int = 5, interval: int = 1
):
    """Transmits 1 (or 2) integers or a large buffer

    :param int node: The target node for network transmissions.
        If using RF24Mesh, this is a unique node_id.
        If using RF24Network, this is the node's logical address.
    :param bool frag: Only use fragmented messages?
    :param int count: The max number of messages to transmit.
    :param int interval: time (in seconds) between transmitting messages.
    """
    while count:
        idle(interval, True)  # idle till its time to emit
        count -= 1
        packets_sent[0] += 1
        # TMRh20's RF24Mesh examples use 1 long int containing a timestamp (in ms)
        message = struct.pack("<L", int(time.monotonic() * 1000))
        if frag:
            message = bytes(
                range((packets_sent[0] + MAX_FRAG_SIZE) % nrf.max_message_length)
            )
        elif not IS_MESH:  # if using RF24Network
            # TMRh20's RF24Network examples use 2 long ints, so add another
            message += struct.pack("<L", packets_sent[0])
        result = False
        start = time.monotonic_ns()
        # pylint: disable=no-value-for-parameter
        if IS_MESH:  # send() is a little different for RF24Mesh vs RF24Network
            result = nrf.send(node, "M", message)
        else:
            result = nrf.send(RF24NetworkHeader(node, "T"), message)
        # pylint: enable=no-value-for-parameter
        end = time.monotonic_ns()
        print(
            "Sending {} (len {})...".format(packets_sent[0], len(message)),
            "ok." if result else "failed.",
            "Transmission took {} ms".format(int((end - start) / 1000000)),
        )















OTA compatibility


Fake BLE Example


New in version 1.2.0.




Changed in version 2.1.0: A new slave() function was added to demonstrate receiving BLE data.



This is a test to show how to use the nRF24L01 as a BLE advertising beacon using the
FakeBLE class.


examples/nrf24l01_fake_ble_test.py

	  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

	import time
import board
from digitalio import DigitalInOut
from circuitpython_nrf24l01.fake_ble import (
    chunk,
    FakeBLE,
    UrlServiceData,
    BatteryServiceData,
    TemperatureServiceData,
)
from circuitpython_nrf24l01.rf24 import address_repr

# invalid default values for scoping
SPI_BUS, CSN_PIN, CE_PIN = (None, None, None)

try:  # on Linux
    import spidev

    SPI_BUS = spidev.SpiDev()  # for a faster interface on linux
    CSN_PIN = 0  # use CE0 on default bus (even faster than using any pin)
    CE_PIN = DigitalInOut(board.D22)  # using pin gpio22 (BCM numbering)

except ImportError:  # on CircuitPython only
    # using board.SPI() automatically selects the MCU's
    # available SPI pins, board.SCK, board.MOSI, board.MISO
    SPI_BUS = board.SPI()  # init spi bus object

    # change these (digital output) pins accordingly
    CE_PIN = DigitalInOut(board.D4)
    CSN_PIN = DigitalInOut(board.D5)


# initialize the nRF24L01 on the spi bus object as a BLE compliant radio
nrf = FakeBLE(SPI_BUS, CSN_PIN, CE_PIN)
# On Linux, csn value is a bit coded
#                 0 = bus 0, CE0  # SPI bus 0 is enabled by default
#                10 = bus 1, CE0  # enable SPI bus 2 prior to running this
#                21 = bus 2, CE1  # enable SPI bus 1 prior to running this

# the name parameter is going to be its broadcasted BLE name
# this can be changed at any time using the `name` attribute
# nrf.name = b"foobar"

# you can optionally set the arbitrary MAC address to be used as the
# BLE device's MAC address. Otherwise this is randomly generated upon
# instantiation of the FakeBLE object.
# nrf.mac = b"\x19\x12\x14\x26\x09\xE0"

# set the Power Amplifier level to -12 dBm since this test example is
# usually run with nRF24L01 transceiver in close proximity to the
# BLE scanning application
nrf.pa_level = -12


def _prompt(remaining):
    if remaining % 5 == 0 or remaining < 5:
        if remaining - 1:
            print(remaining, "advertisements left to go!")
        else:
            print(remaining, "advertisement left to go!")


# create an object for manipulating the battery level data
battery_service = BatteryServiceData()
# battery level data is 1 unsigned byte representing a percentage
battery_service.data = 85


def master(count=50):
    """Sends out the device information."""
    # using the "with" statement is highly recommended if the nRF24L01 is
    # to be used for more than a BLE configuration
    with nrf as ble:
        ble.name = b"nRF24L01"
        # include the radio's pa_level attribute in the payload
        ble.show_pa_level = True
        print(
            "available bytes in next payload:",
            ble.len_available(chunk(battery_service.buffer)),
        )  # using chunk() gives an accurate estimate of available bytes
        for i in range(count):  # advertise data this many times
            if ble.len_available(chunk(battery_service.buffer)) >= 0:
                _prompt(count - i)  # something to show that it isn't frozen
                # broadcast the device name, MAC address, &
                # battery charge info; 0x16 means service data
                ble.advertise(battery_service.buffer, data_type=0x16)
                # channel hoping is recommended per BLE specs
                ble.hop_channel()
                time.sleep(0.5)  # wait till next broadcast
    # nrf.show_pa_level & nrf.name both are set to false when
    # exiting a with statement block


# create an object for manipulating temperature measurements
temperature_service = TemperatureServiceData()
# temperature's float data has up to 2 decimal places of precision
temperature_service.data = 42.0


def send_temp(count=50):
    """Sends out a fake temperature."""
    with nrf as ble:
        ble.name = b"nRF24L01"
        print(
            "available bytes in next payload:",
            ble.len_available(chunk(temperature_service.buffer)),
        )
        for i in range(count):
            if ble.len_available(chunk(temperature_service.buffer)) >= 0:
                _prompt(count - i)
                # broadcast a temperature measurement; 0x16 means service data
                ble.advertise(temperature_service.buffer, data_type=0x16)
                ble.hop_channel()
                time.sleep(0.2)


# use the Eddystone protocol from Google to broadcast a URL as
# service data. We'll need an object to manipulate that also
url_service = UrlServiceData()
# the data attribute converts a URL string into a simplified
# bytes object using byte codes defined by the Eddystone protocol.
url_service.data = "http://www.google.com"
# Eddystone protocol requires an estimated TX PA level at 1 meter
# lower this estimate since we lowered the actual `ble.pa_level`
url_service.pa_level_at_1_meter = -45  # defaults to -25 dBm


def send_url(count=50):
    """Sends out a URL."""
    with nrf as ble:
        print(
            "available bytes in next payload:",
            ble.len_available(chunk(url_service.buffer)),
        )
        # NOTE we did NOT set a device name in this with block
        for i in range(count):
            # URLs easily exceed the nRF24L01's max payload length
            if ble.len_available(chunk(url_service.buffer)) >= 0:
                _prompt(count - i)
                ble.advertise(url_service.buffer, 0x16)
                ble.hop_channel()
                time.sleep(0.2)


def slave(timeout=6):
    """read and decipher BLE payloads for `timeout` seconds."""
    nrf.listen = True
    end_timer = time.monotonic() + timeout
    while time.monotonic() <= end_timer:
        if nrf.available():
            result = nrf.read()
            print(
                "received payload from MAC address",
                address_repr(result.mac, delimit=":")
            )
            if result.name is not None:
                print("\tdevice name:", result.name)
            if result.pa_level is not None:
                print("\tdevice transmitting PA Level:", result.pa_level, "dbm")
            for service_data in result.data:
                if isinstance(service_data, (bytearray, bytes)):
                    print("\traw buffer:", address_repr(service_data, False, " "))
                else:
                    print("\t" + repr(service_data))
    nrf.listen = False
    nrf.flush_rx()  # discard any received raw BLE data














TMRh20’s C++ libraries

All examples are designed to work with TMRh20’s RF24, RF24Network, and RF24Mesh libraries’ examples.
This Circuitpython library uses dynamic payloads enabled by default.
TMRh20’s RF24 library uses static payload lengths by default.

To make this circuitpython library compatible with
TMRh20’s RF24 library [https://github.com/nRF24/RF24/]:


	set dynamic_payloads to False [https://docs.python.org/3/library/constants.html#False].


	set allow_ask_no_ack to False [https://docs.python.org/3/library/constants.html#False].


	set payload_length to the value that
is passed to TMRh20’s RF24::setPayloadSize(). 32 is the default (& maximum)
payload length/size for both libraries.


Warning

Certain C++ datatypes allocate a different amount of memory depending on
the board being used in the Arduino IDE. For example, uint8_t isn’t always
allocated to 1 byte of memory for certain boards.
Make sure you understand the amount of memory that different datatypes occupy in C++.
This will help you comprehend how to configure
payload_length.







For completeness, TMRh20’s RF24 library uses a default value of 15 for the ard attribute,
but this Circuitpython library uses a default value of 3.


Corresponding examples





	circuitpython_nrf24l01

	TMRh20’s C++ examples





	nrf24l01_simple_test (1)

	RF24 gettingStarted



	nrf24l01_ack_payload_test

	RF24 acknowledgementPayloads



	nrf24l01_manual_ack_test (1)

	RF24 manualAcknowledgements



	nrf24l01_multiceiver_test (1)

	RF24 multiceiverDemo



	nrf24l01_stream_test (1)

	RF24 streamingData



	nrf24l01_interrupt_test

	RF24 interruptConfigure



	nrf24l01_context_test

	feature is not available in C++



	nrf24l01_fake_ble_test

	feature is available via floe’s BTLE library [https://github.com/floe/BTLE]



	nrf24l01_network_test (2)

	
	all RF24Network examples except Network_Ping & Network_Ping_Sleep


	all RF24Mesh examples except RF24Mesh_Example_Node2NodeExtra
(which may still work but the data is not interpreted as a string)











	1(1,2,3,4)

	Some of the Circuitpython examples (that are compatible with TMRh20’s examples)
contain 2 or 3 lines of code that are commented out for easy modification. These lines
look like this in the examples’ source code:

# uncomment the following 3 lines for compatibility with TMRh20 library
# nrf.allow_ask_no_ack = False
# nrf.dynamic_payloads = False
# nrf.payload_length = 4







	2

	When running the network examples, it is important to understand the typical
network topology. Otherwise, entering incorrect answers to the
example’s user prompts may result in seemingly bad connections.










            

          

      

      

    

  

    
      
          
            
  
Basic RF24 API


	
class circuitpython_nrf24l01.rf24.RF24(spi: busio.SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI], csn: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], ce_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], spi_frequency=10000000)

	A driver class for the nRF24L01(+) transceiver radios.

This class aims to be compatible with other devices in the nRF24xxx product line that
implement the Nordic proprietary Enhanced ShockBurst Protocol (and/or the legacy
ShockBurst Protocol), but officially only supports (through testing) the nRF24L01 and
nRF24L01+ devices.


	Parameters

	
	spi : SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI]
	The object for the SPI bus that the nRF24L01 is connected to.


Tip

This object is meant to be shared amongst other driver classes (like
adafruit_mcp3xxx.mcp3008 for example) that use the same SPI bus. Otherwise, multiple
devices on the same SPI bus with different spi objects may produce errors or
undesirable behavior.







	csn : DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut]
	The digital output pin that is connected to the nRF24L01’s
CSN (Chip Select Not) pin. This is required.



	ce_pin : DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut]
	The digital output pin that is connected to the nRF24L01’s
CE (Chip Enable) pin. This is required.



	spi_frequency : int [https://docs.python.org/3/library/functions.html#int]
	Specify which SPI frequency (in Hz) to use on the SPI bus. This
parameter only applies to the instantiated RF24 object and is made persistent via
SPIDevice.










Changed in version 1.2.0: 


	new spi_frequency parameter


	removed all keyword arguments in favor of using the provided corresponding
attributes.











	
RF24.open_tx_pipe(address: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → None [https://docs.python.org/3/library/constants.html#None]

	Open a data pipe for TX transmissions.


	Parameters

	
	address : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	The virtual address of the receiving nRF24L01. The address
specified here must match the address set to one of the RX data pipes of the receiving
nRF24L01. The existing address can be altered by writing a bytearray with a length
less than 5. The nRF24L01 will use the first address_length number of bytes for the
RX address on the specified data pipe.










Note

There is no option to specify which data pipe to use because the nRF24L01 only
uses data pipe 0 in TX mode. Additionally, the nRF24L01 uses the same data pipe (pipe
1) for receiving acknowledgement (ACK) packets in TX mode when the auto_ack
attribute is enabled for data pipe 0. Thus, RX pipe 0 is appropriated with the TX
address (specified here) when auto_ack is enabled for data pipe 0.








	
RF24.close_rx_pipe(pipe_number: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Close a specific data pipe from RX transmissions.


	Parameters

	
	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The data pipe to use for RX transactions. This must be in range
[0, 5]. Otherwise a IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown.










Changed in version 1.2.0: removed the reset parameter. Addresses assigned to pipes will persist until
changed or power to the nRF24L01 is discontinued.








	
RF24.open_rx_pipe(pipe_number: int [https://docs.python.org/3/library/functions.html#int], address: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → None [https://docs.python.org/3/library/constants.html#None]

	Open a specific data pipe for RX transmissions.


	Parameters

	
	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The data pipe to use for RX transactions. This must be in range
[0, 5]. Otherwise a IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown.



	address : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	The virtual address to the receiving nRF24L01. If using a
pipe_number greater than 1, then only the MSByte of the address is written, so make
sure MSByte (first character) is unique among other simultaneously receiving addresses.
The existing address can be altered by writing a bytearray with a length less than 5.
The nRF24L01 will use the first address_length number of bytes for the RX address on
the specified data pipe.










Note

The nRF24L01 shares the addresses’ last 4 LSBytes on data pipes 2 through
5. These shared LSBytes are determined by the address set to data pipe 1.








	
RF24.listen

	This attribute is the primary role as a radio.

Setting this attribute incorporates the proper transitioning to/from RX mode as it involves
playing with the power attribute and the nRF24L01’s CE pin. This attribute does not power
down the nRF24L01, but will power it up if needed; use power attribute set to False [https://docs.python.org/3/library/constants.html#False]
to put the nRF24L01 to sleep.

A valid input value is a bool [https://docs.python.org/3/library/functions.html#bool] in which:


	True [https://docs.python.org/3/library/constants.html#True] enables RX mode. Additionally, per Appendix B of the nRF24L01+ Specifications
Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1091756], puts nRF24L01 in
power up mode. Notice the CE pin is be held HIGH during RX mode.


	False [https://docs.python.org/3/library/constants.html#False] disables RX mode. As mentioned in above link, this puts nRF24L01’s power in
Standby-I mode (CE pin is LOW meaning low current & no transmissions) which is ideal
for post-reception work. Disabling RX mode doesn’t flush the RX FIFO buffers, so
remember to flush your 3-level FIFO buffers when appropriate using flush_tx() or
flush_rx() (see also the read() function).





Note

When ack payloads are enabled, this attribute flushes the TX FIFO buffers
upon exiting RX mode. However, this attribute does not flush the TX FIFO buffers
when entering RX mode. This is done to better manage the ACK payloads loaded into
the TX FIFO.




Changed in version 2.1.0: Prior to v2.1.0 this attribute would clear the status flags when entering RX mode. This
was removed to expedite applications that use manually transmitted acknowledgement
payloads.








	
RF24.any() → int [https://docs.python.org/3/library/functions.html#int]

	This function reports the next available payload’s length (in bytes).


	Returns

	
	int [https://docs.python.org/3/library/functions.html#int] of the size (in bytes) of an available RX payload (if any).


	0 if there is no payload in the RX FIFO buffer.















	
RF24.available() → bool [https://docs.python.org/3/library/functions.html#bool]

	A bool [https://docs.python.org/3/library/functions.html#bool] describing if there is a payload in the RX FIFO.

This function is provided for convenience and is synonymous with the following statement:

# let `nrf` be the instantiated RF24 object
nrf.update() and nrf.pipe is not None






New in version 2.0.0.








	
RF24.read(length: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	This function is used to retrieve data from the RX FIFO.

The irq_dr status flag is reset automatically. This function can also be used to fetch
the last ACK packet’s payload if ack is enabled.


	Parameters

	
	length : int [https://docs.python.org/3/library/functions.html#int]
	An optional parameter to specify how many bytes to read from the RX
FIFO buffer. This parameter is not constrained in any way.


	If this parameter is less than the length of the first available payload in the
RX FIFO buffer, then the payload will remain in the RX FIFO buffer until the
entire payload is fetched by this function.


	If this parameter is greater than the next available payload’s length, then
additional data from other payload(s) in the RX FIFO buffer are returned.





Note

The nRF24L01 will repeatedly return the last byte fetched from the RX FIFO
buffer when there is no data to return (even if the RX FIFO is empty). Be
aware that a payload is only removed from the RX FIFO buffer when the entire
payload has been fetched by this function. Notice that this function always
starts reading data from the first byte of the first available payload (if
any) in the RX FIFO buffer. Remember the RX FIFO buffer can hold up to 3
payloads at a maximum of 32 bytes each.











	Returns

	If the length parameter is not specified, then this function returns a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
of the RX payload data or None [https://docs.python.org/3/library/constants.html#None] if there is no payload. This also depends on the
setting of dynamic_payloads & payload_length attributes. Consider the following
two scenarios:


	If the dynamic_payloads attribute is disabled, then the returned bytearray’s
length is equal to the user defined payload_length attribute for the data pipe
that received the payload.


	If the dynamic_payloads attribute is enabled, then the returned bytearray’s length
is equal to the payload’s length




When the length parameter is specified, this function strictly returns a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
of that length despite the contents of the RX FIFO.








New in version 1.2.0: length parameter




Changed in version 2.0.0: renamed this method from recv() to read() because it isn’t doing
any actual receiving. Rather, it is only reading data from the RX FIFO that
was already received/validated by the radio.








	
RF24.send(buf: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]], ask_no_ack: bool [https://docs.python.org/3/library/functions.html#bool] = False, force_retry: int [https://docs.python.org/3/library/functions.html#int] = 0, send_only: bool [https://docs.python.org/3/library/functions.html#bool] = False) → bool [https://docs.python.org/3/library/functions.html#bool], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], list [https://docs.python.org/3/library/stdtypes.html#list][bool [https://docs.python.org/3/library/functions.html#bool], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]]

	This blocking function is used to transmit payload(s).


	Returns

	
	list [https://docs.python.org/3/library/stdtypes.html#list] if a list or tuple of payloads was passed as the buf parameter. Each item
in the returned list will contain the returned status for each corresponding payload
in the list/tuple that was passed. The return statuses will be in one of the
following forms:


	False [https://docs.python.org/3/library/constants.html#False] if transmission fails. Transmission failure can only be detected if
auto_ack is enabled for data pipe 0.


	True [https://docs.python.org/3/library/constants.html#True] if transmission succeeds.


	bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] or True [https://docs.python.org/3/library/constants.html#True] when the ack attribute is True [https://docs.python.org/3/library/constants.html#True]. Because the payload
expects a responding custom ACK payload, the response is returned (upon successful
transmission) as a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] (or True [https://docs.python.org/3/library/constants.html#True] if ACK payload is empty). Returning the
ACK payload can be bypassed by setting the send_only parameter as True [https://docs.python.org/3/library/constants.html#True].








	Parameters

	
	buf : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes],list [https://docs.python.org/3/library/stdtypes.html#list],tuple [https://docs.python.org/3/library/stdtypes.html#tuple]
	The payload to transmit. This bytearray must have a
length in range [1, 32], otherwise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception is thrown. This can
also be a list or tuple of payloads (bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]); in which case, all items in the
list/tuple are processed for consecutive transmissions.


	
	If the dynamic_payloads attribute is disabled for data pipe 0 and this
	bytearray’s length is less than the payload_length attribute for pipe 0,
then this bytearray is padded with zeros until its length is equal to the
payload_length attribute for pipe 0.







	
	If the dynamic_payloads attribute is disabled for data pipe 0 and this
	bytearray’s length is greater than payload_length attribute for pipe 0,
then this bytearray’s length is truncated to equal the payload_length
attribute for pipe 0.













	ask_no_ack : bool [https://docs.python.org/3/library/functions.html#bool]
	Pass this parameter as True [https://docs.python.org/3/library/constants.html#True] to tell the nRF24L01 not to wait
for an acknowledgment from the receiving nRF24L01. This parameter directly controls a
NO_ACK flag in the transmission’s Packet Control Field (9 bits of information
about the payload). Therefore, it takes advantage of an nRF24L01 feature specific to
individual payloads, and its value is not saved anywhere. You do not need to specify
this for every payload if the auto_ack attribute is disabled (for data pipe 0),
however setting this parameter to True [https://docs.python.org/3/library/constants.html#True] will work despite the auto_ack
attribute’s setting.


Important

If the allow_ask_no_ack attribute is disabled (set to False [https://docs.python.org/3/library/constants.html#False]),
then this parameter will have no affect at all. By default the
allow_ask_no_ack attribute is enabled.




Note

Each transmission is in the form of a packet. This packet contains sections
of data around and including the payload. See Chapter 7.3 in the nRF24L01
Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318] for more
details.







	force_retry : int [https://docs.python.org/3/library/functions.html#int]
	The number of brute-force attempts to resend() a failed
transmission. Default is 0. This parameter has no affect on transmissions if
auto_ack is disabled or if ask_no_ack parameter is set to True [https://docs.python.org/3/library/constants.html#True]. Each
re-attempt still takes advantage of
Auto-Retry feature. During multi-payload
processing, this parameter is meant to slow down CircuitPython devices just enough
for the Raspberry Pi to catch up (due to the Raspberry Pi’s seemingly slower SPI
speeds).



	send_only : bool [https://docs.python.org/3/library/functions.html#bool]
	This parameter only applies when the ack attribute is set to
True [https://docs.python.org/3/library/constants.html#True]. Pass this parameter as True [https://docs.python.org/3/library/constants.html#True] if the RX FIFO is not to be manipulated. Many
other libraries’ behave as though this parameter is True [https://docs.python.org/3/library/constants.html#True]
(e.g. The popular TMRh20 Arduino RF24 library). This parameter defaults to False [https://docs.python.org/3/library/constants.html#False].
If this parameter is set to True [https://docs.python.org/3/library/constants.html#True], then use read() to get the ACK payload
(if there is any) from the RX FIFO. Remember that the RX FIFO can only hold
up to 3 payloads at once.










Tip

It is highly recommended that auto_ack attribute is enabled
when sending multiple payloads. Test results with the auto_ack attribute
disabled were rather poor (less than 79% received by a Raspberry Pi). This same
advice applies to the ask_no_ack parameter (leave it as False [https://docs.python.org/3/library/constants.html#False] for multiple
payloads).




Warning

The nRF24L01 will block usage of the TX FIFO buffer upon failed
transmissions. Failed transmission’s payloads stay in TX FIFO buffer until the MCU
calls flush_tx() and clear_status_flags(). Therefore, this function will discard
any payloads in the TX FIFO when called, but failed transmissions’ payloads will
remain in the TX FIFO until send() or flush_tx() is called after failed
transmissions.




New in version 1.2.0: send_only parameter










            

          

      

      

    

  

    
      
          
            
  
Advanced RF24 API


	
RF24.resend(send_only: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Manually re-send the first-out payload from TX FIFO buffers.

This function is meant to be used for payloads that failed to transmit using the
send() function. If a payload failed to transmit using the write() function,
just call clear_status_flags() and re-start the pulse on the nRF24L01’s CE pin.


	Returns

	Data returned from this function follows the same pattern that send()
returns with the added condition that this function will return False [https://docs.python.org/3/library/constants.html#False] if the TX
FIFO buffer is empty.



	Parameters

	
	send_only : bool [https://docs.python.org/3/library/functions.html#bool]
	This parameter only applies when the ack attribute is set to
True [https://docs.python.org/3/library/constants.html#True]. Pass this parameter as True [https://docs.python.org/3/library/constants.html#True] if the RX FIFO is not to be manipulated. Many
other libraries’ behave as though this parameter is True [https://docs.python.org/3/library/constants.html#True]
(e.g. The popular TMRh20 Arduino RF24 library). This parameter defaults to False [https://docs.python.org/3/library/constants.html#False].
If this parameter is set to True [https://docs.python.org/3/library/constants.html#True], then use read() to get the ACK payload
(if there is any) from the RX FIFO. Remember that the RX FIFO can only hold
up to 3 payloads at once.










Note

The nRF24L01 normally removes a payload from the TX FIFO buffer after successful
transmission, but not when this function is called. The payload (successfully
transmitted or not) will remain in the TX FIFO buffer until flush_tx() is called to
remove them. Alternatively, using this function also allows the failed payload to be
over-written by using send() or write() to load a new payload into the TX FIFO
buffer.








	
RF24.write(buf: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], ask_no_ack: bool [https://docs.python.org/3/library/functions.html#bool] = False, write_only: bool [https://docs.python.org/3/library/functions.html#bool] = False) → bool [https://docs.python.org/3/library/functions.html#bool]

	This non-blocking and helper function to send() can only handle
one payload at a time.

This function isn’t completely non-blocking as we still need to wait
for the necessary SPI transactions to complete. Example usage of
this function can be seen in the IRQ pin example and
in the Stream example’s “master_fifo()” function


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the payload was added to the TX FIFO buffer. False [https://docs.python.org/3/library/constants.html#False] if the TX FIFO
buffer is already full, and no payload could be added to it.



	Parameters

	
	buf : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The payload to transmit. This bytearray must have a length greater
than 0 and less than 32 bytes, otherwise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception is thrown.


	If the dynamic_payloads attribute is disabled for data pipe 0 and this bytearray’s
length is less than the payload_length attribute for data pipe 0, then this
bytearray is padded with zeros until its length is equal to the payload_length
attribute for data pipe 0.


	If the dynamic_payloads attribute is disabled  for data pipe 0 and this bytearray’s
length is greater than payload_length attribute for data pipe 0, then this
bytearray’s length is truncated to equal the payload_length attribute for data
pipe 0.








	ask_no_ack : bool [https://docs.python.org/3/library/functions.html#bool]
	Pass this parameter as True [https://docs.python.org/3/library/constants.html#True] to tell the nRF24L01 not to wait for
an acknowledgment from the receiving nRF24L01. This parameter directly controls a
NO_ACK flag in the transmission’s Packet Control Field (9 bits of information about
the payload). Therefore, it takes advantage of an nRF24L01 feature specific to
individual payloads, and its value is not saved anywhere. You do not need to specify
this for every payload if the auto_ack attribute is disabled, however setting this
parameter to True [https://docs.python.org/3/library/constants.html#True] will work despite the auto_ack attribute’s setting.


Important

If the allow_ask_no_ack attribute is disabled (set to False [https://docs.python.org/3/library/constants.html#False]),
then this parameter will have no affect at all. By default the
allow_ask_no_ack attribute is enabled.




Note

Each transmission is in the form of a packet. This packet contains sections
of data around and including the payload. See Chapter 7.3 in the nRF24L01
Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1136318] for more
details.







	write_only : bool [https://docs.python.org/3/library/functions.html#bool]
	This function will not manipulate the nRF24L01’s CE pin if this
parameter is True [https://docs.python.org/3/library/constants.html#True]. The default value of False [https://docs.python.org/3/library/constants.html#False] will ensure that the CE pin is
HIGH upon exiting this function. This function does not set the CE pin LOW at
any time. Use this parameter as True [https://docs.python.org/3/library/constants.html#True] to fill the TX FIFO buffer before beginning
transmissions.


Note

The nRF24L01 doesn’t initiate sending until a mandatory minimum 10 µs pulse
on the CE pin is achieved. If the write_only parameter is False [https://docs.python.org/3/library/constants.html#False], then that
pulse is initiated before this function exits. However, we have left that 10 µs
wait time to be managed by the MCU in cases of asynchronous application, or it is
managed by using send() instead of this function. According to the
Specification sheet, if the CE pin remains HIGH for longer than 10 µs, then the
nRF24L01 will continue to transmit all payloads found in the TX FIFO buffer.














Warning

A note paraphrased from the nRF24L01+ Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422]:

It is important to NEVER to keep the nRF24L01+ in TX mode for more than 4 ms at a time.
If the [auto_ack attribute is] enabled, nRF24L01+ is never in TX mode longer than 4
ms.




Tip

Use this function at your own risk. Because of the underlying
“Enhanced ShockBurst Protocol” [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132607], disobeying the 4
ms rule is easily avoided if the auto_ack attribute is greater than 0. Alternatively,
you MUST use nRF24L01’s IRQ pin and/or user-defined timer(s) to AVOID breaking the
4 ms rule. If the nRF24L01+ Specifications Sheet explicitly states this [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1121422], we have to assume
radio damage or misbehavior as a result of disobeying the 4 ms rule. See also table 18
in the nRF24L01 specification sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1123001] for
calculating an adequate transmission timeout sentinel.




New in version 1.2.0: write_only parameter








	
RF24.load_ack(buf, pipe_number: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Load a payload into the TX FIFO for use on a specific data pipe.

This payload will then be appended to the automatic acknowledgment
(ACK) packet that is sent when new data is received on the specified pipe. See
read() on how to fetch a received custom ACK payloads.


	Parameters

	
	buf : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	This will be the data attached to an automatic ACK packet on the
incoming transmission about the specified pipe_number parameter. This must have a
length in range [1, 32] bytes, otherwise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception is thrown. Any ACK
payloads will remain in the TX FIFO buffer until transmitted successfully or
flush_tx() is called.



	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	This will be the pipe number to use for deciding which
transmissions get a response with the specified buf parameter’s data. This number
must be in range [0, 5], otherwise a IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown.







	Returns

	True [https://docs.python.org/3/library/constants.html#True] if payload was successfully loaded onto the TX FIFO buffer. False [https://docs.python.org/3/library/constants.html#False] if it
wasn’t because TX FIFO buffer is full.






Note

this function takes advantage of a special feature on the nRF24L01 and needs to
be called for every time a customized ACK payload is to be used (not for every
automatic ACK packet – this just appends a payload to the ACK packet). The ack,
auto_ack, and dynamic_payloads attributes are also automatically enabled (with
respect to data pipe 0) by this function when necessary.




Tip

The ACK payload must be set prior to receiving a transmission. It is also worth
noting that the nRF24L01 can hold up to 3 ACK payloads pending transmission. Using this
function does not over-write existing ACK payloads pending; it only adds to the queue
(TX FIFO buffer) if it can. Use flush_tx() to discard unused ACK payloads when done
listening.








	
RF24.power

	This bool [https://docs.python.org/3/library/functions.html#bool] attribute controls the power state of the nRF24L01.

This is exposed for convenience.


	False [https://docs.python.org/3/library/constants.html#False] basically puts the nRF24L01 to sleep (AKA power down mode) with ultra-low
current consumption. No transmissions are executed when sleeping, but the nRF24L01 can
still be accessed through SPI. Upon instantiation, this driver class puts the nRF24L01
to sleep until the MCU invokes RX/TX modes. This driver class will only power down
the nRF24L01 after exiting a The with statement [https://docs.python.org/3/reference/compound_stmts.html#with] block.


	True [https://docs.python.org/3/library/constants.html#True] powers up the nRF24L01. This is the first step towards entering RX/TX modes (see
also listen attribute). Powering up is automatically handled by the listen attribute
as well as the send() and write() functions.





Note

This attribute needs to be True [https://docs.python.org/3/library/constants.html#True] if you want to put radio on Standby-II (highest
current consumption) or Standby-I (moderate current consumption) modes. The state of
the CE pin determines which Standby mode is achieved. See Chapter 6.1.2-7 of the
nRF24L01+ Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1132980] for more details.








	
RF24.address_length

	This int [https://docs.python.org/3/library/functions.html#int] is the length (in bytes) used of RX/TX addresses.

A valid input value must be an int [https://docs.python.org/3/library/functions.html#int] in range [3, 5]. Default is set to the nRF24L01’s maximum of 5.
Any invalid input value results in a address length of 2 bytes.


Changed in version 2.1.0: A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception was thrown when an invalid input value was encountered.
This changed to setting the address length to 2 bytes (for possible reverse engineering protocol
purposes).








	
RF24.address(index: int [https://docs.python.org/3/library/functions.html#int] = - 1)

	Returns the current TX address or optionally RX address. (read-only)

This function returns the full content of the nRF24L01’s registers about RX/TX addresses
despite what address_length is set to.


	Parameters

	
	index : int [https://docs.python.org/3/library/functions.html#int]
	the number of the data pipe whose address is to be returned. A valid
index ranges [0,5] for RX addresses or any negative number for the TX address.
Otherwise an IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] is thrown. This parameter defaults to -1.










New in version 1.2.0.








	
RF24.last_tx_arc

	Return the number of attempts made for last transmission (read-only).

This attribute resets to 0 at the beginning of every transmission in TX mode.
Remember that the number of automatic retry attempts made for each transmission is
configured with the arc attribute or the set_auto_retries() function.






	
RF24.is_plus_variant

	A bool [https://docs.python.org/3/library/functions.html#bool] describing if the nRF24L01 is a plus variant or not (read-only).

This information is determined upon instantiation.


New in version 1.2.0.








Debugging Output


	
RF24.print_details(dump_pipes: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	This debugging function outputs all details about the nRF24L01.

Some information may be irrelevant depending on nRF24L01’s state/condition.


	Prints

	
	Is a plus variant True means the transceiver is a nRF24L01+. False
means the transceiver is a nRF24L01 (not a plus variant).


	Channel The current setting of the channel attribute


	RF Data Rate The current setting of the RF data_rate attribute.


	RF Power Amplifier The current setting of the pa_level attribute.


	CRC bytes The current setting of the crc attribute


	Address length The current setting of the address_length attribute


	TX Payload lengths The current setting of the payload_length attribute for TX
operations (concerning data pipe 0)


	Auto retry delay The current setting of the ard attribute


	Auto retry attempts The current setting of the arc attribute


	Re-use TX FIFO Is the first payload in the TX FIFO to be re-used for subsequent
transmissions (this flag is set to True [https://docs.python.org/3/library/constants.html#True] when entering resend() and reset to
False [https://docs.python.org/3/library/constants.html#False] when resend() exits)


	Packets lost on current channel Total amount of packets lost (transmission
failures). This only resets when the channel is changed. This count will
only go up to 15.


	Retry attempts made for last transmission Amount of attempts to re-transmit
during last transmission (resets per payload)


	IRQ on Data Ready The current setting of the IRQ pin on “Data Ready” event


	IRQ on Data Sent The current setting of the IRQ pin on “Data Sent” event


	IRQ on Data Fail The current setting of the IRQ pin on “Data Fail” event


	Data Ready Is there RX data ready to be read? (state of the irq_dr flag)


	Data Sent Has the TX data been sent? (state of the irq_ds flag)


	Data Failed Has the maximum attempts to re-transmit been reached?
(state of the irq_df flag)


	TX FIFO full Is the TX FIFO buffer full? (state of the tx_full flag)


	TX FIFO empty Is the TX FIFO buffer empty?


	RX FIFO full Is the RX FIFO buffer full?


	RX FIFO empty Is the RX FIFO buffer empty?


	Custom ACK payload Is the nRF24L01 setup to use an extra (user defined) payload
attached to the acknowledgment packet? (state of the ack attribute)


	Ask no ACK The current setting of the allow_ask_no_ack attribute.


	Automatic Acknowledgment The status of the auto_ack feature. If this value is a
binary representation, then each bit represents the feature’s status for each pipe.


	Dynamic Payloads The status of the dynamic_payloads feature. If this value is a
binary representation, then each bit represents the feature’s status for each pipe.


	Primary Mode The current mode (RX or TX) of communication of the nRF24L01 device.


	Power Mode The power state can be Off, Standby-I, Standby-II, or On.






	Parameters

	
	dump_pipes : bool [https://docs.python.org/3/library/functions.html#bool]
	True [https://docs.python.org/3/library/constants.html#True] appends the output and prints:


	the current address used for TX transmissions. This value is the entire content of
the nRF24L01’s register about the TX address (despite what address_length is set
to).


	Pipe [#] ([open/closed]) bound: [address] where # represent the pipe number,
the open/closed status is relative to the pipe’s RX status, and address is
the full value stored in the nRF24L01’s RX address registers (despite what
address_length is set to).


	if the pipe is open, then the output also prints expecting [X] byte static
payloads where X is the payload_length (in bytes) the pipe is setup to
receive when dynamic_payloads is disabled for that pipe.




Set this parameter to False [https://docs.python.org/3/library/constants.html#False] (it default value) to skips this extra information.












Changed in version v2.1.0: Changed the default value for the dump_pipes parameter to True [https://docs.python.org/3/library/constants.html#True]








	
RF24.print_pipes() → None [https://docs.python.org/3/library/constants.html#None]

	Prints all information specific to pipe’s addresses, RX state, & expected
static payload sizes (if configured to use static payloads).

This method is called from print_details() if the dump_pipes parameter is
set to True [https://docs.python.org/3/library/constants.html#True].


Changed in version v2.1.0: Changed this method’s name from the private method _dump_pipes() to a public method
print_pipes().








	
circuitpython_nrf24l01.rf24.address_repr(buf, reverse: bool [https://docs.python.org/3/library/functions.html#bool] = True, delimit: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert a buffer into a hexlified string.

This method is primarily used in print_pipes() to
display how the address is used by the radio.

>>> from circuitpython_nrf24l01.rf24 import address_repr
>>> address_repr(b"1Node")
'65646F4E31'






	Parameters

	
	buf : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The buffer of bytes to convert into a hexlified
string.



	reverse : bool [https://docs.python.org/3/library/functions.html#bool]
	A bool [https://docs.python.org/3/library/functions.html#bool] to control the resulting endianess. True [https://docs.python.org/3/library/constants.html#True]
outputs the result as big endian. False [https://docs.python.org/3/library/constants.html#False] outputs the result as little
endian. This parameter defaults to True [https://docs.python.org/3/library/constants.html#True] since bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] and bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
objects are stored in big endian but written in little endian.



	delimit : str [https://docs.python.org/3/library/stdtypes.html#str]
	A chr [https://docs.python.org/3/library/functions.html#chr] or str [https://docs.python.org/3/library/stdtypes.html#str] to use as a delimiter between bytes.
Defaults to an empty string.







	Returns

	A string of hexadecimal characters in big endian form of the
specified buf parameter.






Changed in version 2.1.0: Added parameters reverse and delimit as this function proved vital to
debugging and developing RF24NetworkHeader & RF24NetworkFrame.









Status Byte


	
RF24.tx_full

	An bool [https://docs.python.org/3/library/functions.html#bool] to represent if the TX FIFO is full. (read-only)

Calling this does not execute an SPI transaction. It only
exposes that latest data contained in the STATUS byte that’s always returned from any
other SPI transactions. Use the update()
function to manually refresh this data when needed (especially after calling
flush_tx()).


	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] for TX FIFO buffer is full


	False [https://docs.python.org/3/library/constants.html#False] for TX FIFO buffer is not full. This doesn’t mean the TX FIFO buffer is
empty.















	
RF24.irq_dr

	A bool [https://docs.python.org/3/library/functions.html#bool] that represents the “Data Ready” interrupted flag. (read-only)


	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] represents Data is in the RX FIFO buffer


	False [https://docs.python.org/3/library/constants.html#False] represents anything depending on context (state/condition of FIFO buffers);
usually this means the flag has been reset.









Important

It is recommended that this flag is only used when the IRQ pin is active.
To determine if there is a payload in the RX FIFO, use fifo(), any(), or pipe.
Notice that calling read() also resets this status flag.



Pass data_recv parameter as True [https://docs.python.org/3/library/constants.html#True] to
clear_status_flags() and reset this.
As this is a virtual representation of the interrupt event, this attribute will
always be updated despite what the actual IRQ pin is configured to do about this
event.

Calling this does not execute an SPI transaction. It only
exposes that latest data contained in the STATUS byte that’s always returned from any
other SPI transactions. Use the update()
function to manually refresh this data when needed (especially after calling
clear_status_flags()).






	
RF24.irq_df

	A bool [https://docs.python.org/3/library/functions.html#bool] that represents the “Data Failed” interrupted flag. (read-only)


	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] signifies the nRF24L01 attempted all configured retries


	False [https://docs.python.org/3/library/constants.html#False] represents anything depending on context (state/condition); usually this
means the flag has been reset.









Important

This can only return True [https://docs.python.org/3/library/constants.html#True] if auto_ack is enabled, otherwise this will
always be False [https://docs.python.org/3/library/constants.html#False].



Pass data_fail parameter as True [https://docs.python.org/3/library/constants.html#True] to
clear_status_flags() and reset this.
As this is a virtual representation of the interrupt event, this attribute will
always be updated despite what the actual IRQ pin is configured to do about this
event.

Calling this does not execute an SPI transaction. It only
exposes that latest data contained in the STATUS byte that’s always returned from any
other SPI transactions. Use the update()
function to manually refresh this data when needed (especially after calling
clear_status_flags()).






	
RF24.irq_ds

	A bool [https://docs.python.org/3/library/functions.html#bool] that represents the “Data Sent” interrupted flag. (read-only)


	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] represents a successful transmission


	False [https://docs.python.org/3/library/constants.html#False] represents anything depending on context (state/condition of FIFO buffers);
usually this means the flag has been reset.








Pass data_sent parameter as True [https://docs.python.org/3/library/constants.html#True] to
clear_status_flags() and reset this.
As this is a virtual representation of the interrupt event, this attribute will
always be updated despite what the actual IRQ pin is configured to do about this
event.

Calling this does not execute an SPI transaction. It only
exposes that latest data contained in the STATUS byte that’s always returned from any
other SPI transactions. Use the update()
function to manually refresh this data when needed (especially after calling
clear_status_flags()).






	
RF24.update() → typing_extensions.Literal[True]

	This function gets an updated status byte over SPI.

Refreshing the status byte is vital to checking status of the interrupt flags, RX pipe
number related to current RX payload, and if the TX FIFO buffer is full. This function
returns nothing, but internally updates the irq_dr, irq_ds, irq_df, pipe, and
tx_full attributes. Internally this is a helper function to available(), send(),
and resend() functions.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] for every call. This value is meant to allow this function to be used
in The if statement [https://docs.python.org/3/reference/compound_stmts.html#if] or The while statement [https://docs.python.org/3/reference/compound_stmts.html#while] in conjunction with attributes related to the
refreshed status byte.






Changed in version 1.2.3: Arbitrarily returns True [https://docs.python.org/3/library/constants.html#True].








	
RF24.pipe

	The number of the data pipe that received the next available
payload in the RX FIFO. (read only)


Changed in version 1.2.0: In previous versions of this library, this attribute was a read-only function
(pipe()).



Calling this does not execute an SPI transaction. It only
exposes that latest data contained in the STATUS byte that’s always returned from any
other SPI transactions. Use the update()
function to manually refresh this data when needed (especially after calling
flush_rx()).


	Returns

	
	None [https://docs.python.org/3/library/constants.html#None] if there is no payload in RX FIFO.


	The int [https://docs.python.org/3/library/functions.html#int] identifying pipe number [0,5] that received the next
available payload in the RX FIFO buffer.













	
RF24.clear_status_flags(data_recv: bool [https://docs.python.org/3/library/functions.html#bool] = True, data_sent: bool [https://docs.python.org/3/library/functions.html#bool] = True, data_fail: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	This clears the interrupt flags in the status register.

Internally, this is automatically called by send(), write(), read().


	Parameters

	
	data_recv : bool [https://docs.python.org/3/library/functions.html#bool]
	specifies whether to clear the “RX Data Ready”
(irq_dr) flag.



	data_sent : bool [https://docs.python.org/3/library/functions.html#bool]
	specifies whether to clear the “TX Data Sent”
(irq_ds) flag.



	data_fail : bool [https://docs.python.org/3/library/functions.html#bool]
	specifies whether to clear the “Max Re-transmit reached”
(irq_df) flag.










Note

Clearing the data_fail flag is necessary for continued transmissions from the
nRF24L01 (locks the TX FIFO buffer when irq_df is True [https://docs.python.org/3/library/constants.html#True]) despite whether or not the
MCU is taking advantage of the interrupt (IRQ) pin. Call this function only when there
is an antiquated status flag (after you’ve dealt with the specific payload related to
the status flags that were set), otherwise it can cause payloads to be ignored and
occupy the RX/TX FIFO buffers. See Appendix A of the nRF24L01+ Specifications Sheet [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1047965] for an outline of
proper behavior.









FIFO management


	
RF24.flush_rx()

	Flush all 3 levels of the RX FIFO.


Note

The nRF24L01 RX FIFO is 3 level stack that holds payload data. This means that
there can be up to 3 received payloads (each of a maximum length equal to 32 bytes)
waiting to be read (and removed from the stack) by read(). This
function clears all 3 levels.








	
RF24.flush_tx()

	Flush all 3 levels of the TX FIFO.


Note

The nRF24L01 TX FIFO is 3 level stack that holds payload data. This means that
there can be up to 3 payloads (each of a maximum length equal to 32 bytes) waiting to
be transmit by send(), resend() or write(). This function clears all 3 levels. It
is worth noting that the payload data is only removed from the TX FIFO stack upon
successful transmission (see also resend() as the handling of failed transmissions
can be altered).








	
RF24.fifo(about_tx: bool [https://docs.python.org/3/library/functions.html#bool] = False, check_empty: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None)

	This provides the status of the TX/RX FIFO buffers. (read-only)


	Parameters

	
	about_tx : bool [https://docs.python.org/3/library/functions.html#bool]
	
	True [https://docs.python.org/3/library/constants.html#True] means the information returned is about the TX FIFO buffer.


	False [https://docs.python.org/3/library/constants.html#False] means the information returned is about the RX FIFO buffer. This parameter
defaults to False [https://docs.python.org/3/library/constants.html#False] when not specified.








	check_empty : bool [https://docs.python.org/3/library/functions.html#bool]
	
	True [https://docs.python.org/3/library/constants.html#True] tests if the specified FIFO buffer is empty.


	False [https://docs.python.org/3/library/constants.html#False] tests if the specified FIFO buffer is full.


	None [https://docs.python.org/3/library/constants.html#None] (when not specified) returns a 2 bit number representing both empty (bit 1) &
full (bit 0) tests related to the FIFO buffer specified using the about_tx
parameter.












	Returns

	
	A bool [https://docs.python.org/3/library/functions.html#bool] answer to the question:

”Is the [TX/RX](about_tx) FIFO buffer [empty/full](check_empty)?



	If the check_empty parameter is not specified: an int [https://docs.python.org/3/library/functions.html#int] in range [0, 2] for which:


	1 means the specified FIFO buffer is empty


	2 means the specified FIFO buffer is full


	0 means the specified FIFO buffer is neither full nor empty




















Ambiguous Signal Detection


	
RF24.rpd

	Returns True [https://docs.python.org/3/library/constants.html#True] if signal was detected or False [https://docs.python.org/3/library/constants.html#False] if not. (read-only)

The RPD (Received Power Detector) flag is triggered in the following cases:


	During RX mode (when listen is True [https://docs.python.org/3/library/constants.html#True]) and an arbitrary RF transmission with
a gain above -64 dBm threshold is/was present.


	When a packet is received (instigated by the nRF24L01 used to detect/”listen” for
incoming packets).





Note

See also
section 6.4 of the Specification Sheet concerning the RPD flag [https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf#G1160291]. Ambient
temperature affects the -64 dBm threshold. The latching of this flag happens
differently under certain conditions.




New in version 1.2.0.








	
RF24.start_carrier_wave()

	Starts a continuous carrier wave test.

This is a basic test of the nRF24L01’s TX output. It is a commonly required
test for telecommunication regulations. Calling this function may introduce
interference with other transceivers that use frequencies in range [2.4,
2.525] GHz. To verify that this test is working properly, use the following
code on a separate nRF24L01 transceiver:

# declare objects for SPI bus and CSN pin and CE pin
nrf = RF24(spi, csn, ce)
# set nrf.pa_level, nrf.channel, & nrf.data_rate values to
# match the corresponding attributes on the device that is
# transmitting the carrier wave
nrf.listen = True
if nrf.rpd:
    print("carrier wave detected")





The pa_level, channel & data_rate attributes are vital factors to
the success of this test. Be sure these attributes are set to the desired test
conditions before calling this function. See also the rpd attribute.


Note

To preserve backward compatibility with non-plus variants of the
nRF24L01, this function will also change certain settings if is_plus_variant
is False [https://docs.python.org/3/library/constants.html#False]. These settings changes include


	disabling crc


	disabling auto_ack


	disabling arc and setting ard to 250 microseconds


	changing the TX address to b"\xFF\xFF\xFF\xFF\xFF"


	loading a 32-byte payload (each byte is 0xFF) into the TX FIFO buffer




Finally the radio continuously behaves like using resend() to establish
the constant carrier wave. If is_plus_variant is True [https://docs.python.org/3/library/constants.html#True], then none of these
changes are needed nor applied.




New in version 1.2.0.








	
RF24.stop_carrier_wave()

	Stops a continuous carrier wave test.

See start_carrier_wave() for more details.


Note

Calling this function puts the nRF24L01 to sleep (AKA power down mode).




Hint

If the radio is a non-plus variant (is_plus_variant returns
False [https://docs.python.org/3/library/constants.html#False]), then use The with statement [https://docs.python.org/3/reference/compound_stmts.html#with] to re-establish the previous settings:

# let `nrf` be the instantiated RF24 object
with nrf:
    pass  # settings are now restored








New in version 1.2.0.











            

          

      

      

    

  

    
      
          
            
  
Configurable RF24 API


	
RF24.ack

	Represents use of custom payloads as part of the ACK packet.

Use this attribute to set/check if the custom ACK payloads feature is
enabled (True [https://docs.python.org/3/library/constants.html#True]) or disabled (False [https://docs.python.org/3/library/constants.html#False]). Default
setting is False [https://docs.python.org/3/library/constants.html#False].


Note

This attribute differs from the auto_ack attribute because the
auto_ack attribute enables or disables the use of automatic ACK packets. By default,
ACK packets have no payload. This attribute enables or disables attaching
payloads to the ACK packets.




See also

Use load_ack() attach ACK payloads.

Use read(), send(), resend() to retrieve ACK payloads.




Important

As dynamic_payloads and auto_ack attributes are required for this feature to work,
they are automatically enabled (on data pipe 0) as needed. However, it is required to
enable the auto_ack and dynamic_payloads features on all applicable pipes.
Disabling this feature does not disable the auto_ack and dynamic_payloads
attributes for any data pipe; they work just fine without this feature.








	
RF24.allow_ask_no_ack

	Allow or disable ask_no_ack parameter to send() & write().

This attribute is enabled by default, and it only exists to provide support for the
Si24R1. The designers of the Si24R1 (a cheap chinese clone of the nRF24L01) happened to
clone a typo from the first version of the nRF24L01 specification sheet. Disable this attribute for the Si24R1.






	
RF24.interrupt_config(data_recv: bool [https://docs.python.org/3/library/functions.html#bool] = True, data_sent: bool [https://docs.python.org/3/library/functions.html#bool] = True, data_fail: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Sets the configuration of the nRF24L01’s IRQ pin. (write-only)

The digital signal from the nRF24L01’s IRQ (Interrupt ReQuest) pin is active LOW.


	Parameters

	
	data_recv : bool [https://docs.python.org/3/library/functions.html#bool]
	If this is True [https://docs.python.org/3/library/constants.html#True], then IRQ pin goes active when new data is put
into the RX FIFO buffer. Default setting is True [https://docs.python.org/3/library/constants.html#True]



	data_sent : bool [https://docs.python.org/3/library/functions.html#bool]
	If this is True [https://docs.python.org/3/library/constants.html#True], then IRQ pin goes active when a payload from TX
buffer is successfully transmit. Default setting is True [https://docs.python.org/3/library/constants.html#True]



	data_fail : bool [https://docs.python.org/3/library/functions.html#bool]
	If this is True [https://docs.python.org/3/library/constants.html#True], then IRQ pin goes active when the maximum
number of attempts to re-transmit the packet have been reached. If auto_ack
attribute is disabled for pipe 0, then this IRQ event is not used. Default setting
is True [https://docs.python.org/3/library/constants.html#True]










Note

To fetch the status (not configuration) of these IRQ flags, use the irq_df,
irq_ds, irq_dr attributes respectively.




Tip

Paraphrased from nRF24L01+ Specification Sheet:

The procedure for handling irq_dr IRQ
should be:


	retrieve the payload from RX FIFO using read()


	clear irq_dr status flag (taken care
of by using read() in previous step)


	read FIFO_STATUS register to check if there are more payloads available in RX FIFO
buffer. A call to pipe (may require update() to be called beforehand), any()
or even (False, True) as parameters to fifo() will get this result.


	if there is more data in RX FIFO, repeat from step 1











	
RF24.data_rate

	This int [https://docs.python.org/3/library/functions.html#int] attribute specifies the RF data rate.

A valid input value is:


	1 sets the frequency data rate to 1 Mbps


	2 sets the frequency data rate to 2 Mbps


	250 sets the frequency data rate to 250 kbps (see warning below)




Any invalid input throws a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception. Default is 1 Mbps.


Warning

250 kbps is not available for all variants of transceivers based on the
nRF24L01. This library will assume that the transceiver being used does
support 250 kbps, but there is no way to determine (via software) if that
is actually the case. Please refer to your transceiver’s manufacturer information to
determine if 250 kbps is supposed to be supported.


Hint

You can perform a carrier wave test on 250 kbps to see if your transceiver hardware
does support that data rate. See start_carrier_wave(), stop_carrier_wave(), and
rpd to execute a hardware test.






Changed in version 2.2.0: Blindly allow configuring the radio for 250 kbps as support is marginally dependent
on the hardware being used.








	
RF24.channel

	This int [https://docs.python.org/3/library/functions.html#int] attribute specifies the nRF24L01’s frequency.

A valid input value must be in range [0, 125] (that means [2.4, 2.525] GHz). Otherwise a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception is thrown. Default is 76 (2.476 GHz).






	
RF24.crc

	This int [https://docs.python.org/3/library/functions.html#int] attribute specifies the CRC checksum length in bytes.

CRC (cyclic redundancy checking) is a way of making sure that the transmission didn’t get
corrupted over the air.

A valid input value must be:


	0 disables CRC (no anti-corruption of data)


	1 enables CRC encoding scheme using 1 byte (weak anti-corruption of data)


	2 enables CRC encoding scheme using 2 bytes (better anti-corruption of data)




Any invalid input will be clamped to range [0, 2]. Default is enabled using 2 bytes.


Note

The nRF24L01 automatically enables CRC if automatic acknowledgment feature is
enabled (see auto_ack attribute) for any data pipe.




Changed in version 2.0.0: Invalid input values are clamped to proper range instead of throwing a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
exception.








	
RF24.pa_level

	This int [https://docs.python.org/3/library/functions.html#int] is the power amplifier level (in dBm).

Higher levels mean the transmission will cover a longer distance. Use this attribute to
tweak the nRF24L01 current consumption on projects that don’t span large areas.

A valid input value is:


	-18 sets the nRF24L01’s power amplifier to -18 dBm (lowest)


	-12 sets the nRF24L01’s power amplifier to -12 dBm


	-6 sets the nRF24L01’s power amplifier to -6 dBm


	0 sets the nRF24L01’s power amplifier to 0 dBm (highest)




If this attribute is set to a list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], then the list/tuple must contain the
desired power amplifier level (from list above) at index 0 and a bool [https://docs.python.org/3/library/functions.html#bool] to control
the Low Noise Amplifier (LNA) feature at index 1. All other indices will be discarded.


Note

The LNA feature setting only applies to the nRF24L01 (non-plus variant).



Any invalid input will invoke the default of 0 dBm with LNA enabled.






	
RF24.is_lna_enabled

	A read-only bool [https://docs.python.org/3/library/functions.html#bool] attribute about the LNA gain feature.

LNA stands for Low Noise Amplifier. See pa_level attribute about how to set this. Default
is always enabled, but this feature is specific to non-plus variants of nRF24L01 transceivers.
If is_plus_variant attribute is True [https://docs.python.org/3/library/constants.html#True], then setting feature in any way has no affect.






dynamic_payloads


Note

This attribute mostly relates to RX operations, but data
pipe 0 applies to TX operations also.




	
RF24.dynamic_payloads

	This int [https://docs.python.org/3/library/functions.html#int] attribute is the dynamic payload length feature for
any/all pipes.

Default setting is enabled on all pipes. A valid input is:


	A bool [https://docs.python.org/3/library/functions.html#bool] to enable (True [https://docs.python.org/3/library/constants.html#True]) or disable (False [https://docs.python.org/3/library/constants.html#False]) the dynamic payload length feature for all data pipes.


	A list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] containing booleans or integers can be used control this feature per data pipe. Index 0
controls this feature on data pipe 0. Indices greater than 5 will be
ignored since there are only 6 data pipes. If any
index’s value is less than 0 (a negative value), then the pipe corresponding to that
index will remain unaffected.


	An int [https://docs.python.org/3/library/functions.html#int] where each bit in the integer represents the dynamic payload feature
per pipe. Bit position 0 controls this feature for data pipe 0, and bit position 5
controls this feature for data pipe 5. All bits in positions greater than 5 are ignored.





Note


	The payload_length attribute is ignored when this feature is enabled
for any respective data pipes.


	Be sure to adjust the payload_length attribute accordingly when this
feature is disabled for any respective data pipes.







	Returns

	An int [https://docs.python.org/3/library/functions.html#int] (1 unsigned byte) where each bit in the integer represents the dynamic
payload length feature per pipe.






Changed in version 1.2.0: Accepts a list or tuple for control of the dynamic payload length feature per pipe.




Changed in version 2.0.0: 


	Returns a integer instead of a boolean


	Accepts an integer for binary control of the dynamic payload length
feature per pipe











	
RF24.set_dynamic_payloads(enable: bool [https://docs.python.org/3/library/functions.html#bool], pipe_number: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Control the dynamic payload feature for a specific data pipe.


	Parameters

	
	enable : bool [https://docs.python.org/3/library/functions.html#bool]
	The state of the dynamic payload feature about a specified
data pipe.



	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The specific data pipe number in range [0, 5] to apply the
enable parameter. If this parameter is not specified the enable parameter is
applied to all data pipes. If this parameter is not in range [0, 5], then a
IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown.










New in version 2.0.0.








	
RF24.get_dynamic_payloads(pipe_number: int [https://docs.python.org/3/library/functions.html#int] = 0) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns a bool [https://docs.python.org/3/library/functions.html#bool] describing the dynamic payload feature about a pipe.


	Parameters

	
	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The specific data pipe number in range [0, 5] concerning the
dynamic payload length feature. If this parameter is not in range [0, 5], then a
IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown. If this parameter is not specified, then the data
returned is about data pipe 0.















payload_length


Note

This attribute mostly relates to RX operations, but data
pipe 0 applies to TX operations also.




	
RF24.payload_length

	This int [https://docs.python.org/3/library/functions.html#int] attribute is the length of static payloads for any/all pipes.

This attribute can be used to specify the static payload length used for all data pipes
in which the dynamic_payloads attribute is disabled

A valid input value must be:


	an int [https://docs.python.org/3/library/functions.html#int] in which the value that will be clamped to the range [1, 32]. Setting this attribute to a
single int [https://docs.python.org/3/library/functions.html#int] configures all 6 data pipes.


	A list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] containing integers can be used control this feature per data pipe. Index 0
controls this feature on data pipe 0. Indices greater than 5 will be
ignored since there are only 6 data pipes. If any index’s
value is less than or equal to``0``, then the existing setting for the corresponding data pipe will
persist (not be changed).




Default is set to the nRF24L01’s maximum of 32 (on all data pipes).


	Returns

	The current setting of the expected static payload length feature for pipe 0 only.






Changed in version 1.2.0: Return a list of all payload length settings for all pipes. This implementation
introduced a couple bugs:


	The settings could be changed improperly in a way that was not written to the
nRF24L01 registers.


	There was no way to catch an invalid setting if configured improperly via the
first bug. This led to errors in using other functions that handle payloads or
the length of payloads.







Changed in version 2.0.0: This attribute returns the configuration about static payload length for data pipe 0
only. Use get_payload_length() to fetch the configuration of the static payload
length feature for any data pipe.








	
RF24.set_payload_length(length: int [https://docs.python.org/3/library/functions.html#int], pipe_number: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Sets the static payload length feature for each/all data pipes.

This function only affects data pipes for which the dynamic_payloads attribute is
disabled.


	Parameters

	
	length : int [https://docs.python.org/3/library/functions.html#int]
	The number of bytes in range [1, 32] for to be used for static
payload lengths. If this number is not in range [1, 32], then it will be clamped to
that range.



	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The specific data pipe number in range [0, 5] to apply the
length parameter. If this parameter is not specified the length parameter is
applied to all data pipes. If this parameter is not in range [0, 5], then a
IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown.










New in version 2.0.0.








	
RF24.get_payload_length(pipe_number: int [https://docs.python.org/3/library/functions.html#int] = 0) → int [https://docs.python.org/3/library/functions.html#int]

	Returns an int [https://docs.python.org/3/library/functions.html#int] describing the specified data pipe’s static
payload length.

The data returned by this function is only relevant for data pipes in which the
dynamic_payloads attribute is disabled.


	Parameters

	
	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The specific data pipe number in range [0, 5] to concerning the
static payload length feature. If this parameter is not in range [0, 5], then a
IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown. If this parameter is not specified, then the data
returned is about data pipe 0.










New in version 2.0.0.









auto_ack


Important

This attribute mostly relates to RX operations, but data
pipe 0 applies to TX operations also.


	This attribute will intuitively disable the acknowledgement payload
feature (ack attribute) when the automatic acknowledgement feature is disabled for
data pipe 0.


	When entering in TX mode, the listen attribute will ensure data pipe 0 is open to
receive automatic acknowledgments for outgoing transmissions.


	Be sure to configure this attribute for data pipe 0 before calling open_tx_pipe()
because the RX address for pipe 0 needs to be overwritten for automatic acknowledgments
to be received in TX mode. The listen attribute will re-write the RX address for data
pipe 0 when entering RX mode if needed.







	
RF24.auto_ack

	This int [https://docs.python.org/3/library/functions.html#int] attribute is the automatic acknowledgment feature for
any/all pipes.

Default setting is enabled on all data pipes. A valid input is:


	A bool [https://docs.python.org/3/library/functions.html#bool] to enable (True [https://docs.python.org/3/library/constants.html#True]) or disable (False [https://docs.python.org/3/library/constants.html#False]) transmitting automatic acknowledgment packets for all data pipes.


	A list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] containing booleans or integers can be used control this feature per data pipe. Index 0
controls this feature on data pipe 0. Indices greater than 5 will be
ignored since there are only 6 data pipes. If any
index’s value is less than 0 (a negative value), then the pipe corresponding to that
index will remain unaffected.


	An int [https://docs.python.org/3/library/functions.html#int] where each bit in the integer represents the automatic acknowledgement feature
per pipe. Bit position 0 controls this feature for data pipe 0, and bit position 5
controls this feature for data pipe 5. All bits in positions greater than 5 are ignored.





Note

The CRC (cyclic redundancy checking) is enabled (for all
transmissions) automatically by the nRF24L01 if this attribute is enabled
for any data pipe (see also crc attribute). The crc attribute will
remain unaffected when disabling this attribute for any data pipes.




	Returns

	An int [https://docs.python.org/3/library/functions.html#int] (1 unsigned byte) where each bit in the integer represents the automatic
acknowledgement feature per pipe.






Changed in version 1.2.0: Accepts a list or tuple for control of the automatic acknowledgement feature per pipe.




Changed in version 2.0.0: 


	Returns an integer instead of a boolean


	Accepts an integer for binary control of the automatic acknowledgement feature
per pipe











	
RF24.set_auto_ack(enable: bool [https://docs.python.org/3/library/functions.html#bool], pipe_number: int [https://docs.python.org/3/library/functions.html#int])

	Control the auto_ack feature for a specific data pipe.


	Parameters

	
	enable : bool [https://docs.python.org/3/library/functions.html#bool]
	The state of the automatic acknowledgement feature about a specified
data pipe.



	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The specific data pipe number in range [0, 5] to apply the
enable parameter. If this parameter is not specified the enable parameter is
applied to all data pipes. If this parameter is not in range [0, 5], then a
IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown.










New in version 2.0.0.








	
RF24.get_auto_ack(pipe_number: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns a bool [https://docs.python.org/3/library/functions.html#bool] describing the auto_ack feature about a data pipe.


	Parameters

	
	pipe_number : int [https://docs.python.org/3/library/functions.html#int]
	The specific data pipe number in range [0, 5] concerning the
setting for the automatic acknowledgment feature. If this parameter is not in range
[0, 5], then a IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] exception is thrown. If this parameter is not specified,
then the data returned is about data pipe 0.










New in version 2.0.0.









Auto-Retry feature


	
RF24.arc

	This int [https://docs.python.org/3/library/functions.html#int] attribute specifies the number of attempts to
re-transmit TX payload when ACK packet is not received.

The auto_ack attribute must be enabled on the receiving nRF24L01’s pipe 0 & the
RX data pipe and the transmitting nRF24L01’s pipe 0 to properly use this
attribute. If auto_ack is disabled on the transmitting nRF24L01’s pipe 0, then this
attribute is ignored when calling send().

A valid input value will be clamped to range [0, 15]. Default is set to 15. A value of
0 disables the automatic re-transmit feature, but the sending nRF24L01 will still
wait the number of microseconds specified by ard for an Acknowledgement (ACK) packet
response (assuming auto_ack is enabled).


Changed in version 2.0.0: Invalid input values are clamped to proper range instead of throwing a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
exception.




Changed in version 2.2.0: Default value changed from 3 to the maximum 15. This only affects performance in
scenarios that experience unreliable reception.








	
RF24.ard

	This int [https://docs.python.org/3/library/functions.html#int] attribute specifies the delay (in microseconds) between attempts
to automatically re-transmit the TX payload when no ACK packet is received.

During this time, the nRF24L01 is listening for the ACK packet. If the
auto_ack attribute is disabled for pipe 0, then this attribute is not applied.

A valid input value will be clamped to range [250, 4000]. Default is 1500 for
reliability. If this is set to a value that is not multiple of 250, then the highest
multiple of 250 that is no greater than the input value is used.


Note

Paraphrased from nRF24L01 specifications sheet:

Please take care when setting this parameter. If the custom ACK payload is more than
15 bytes in 2 Mbps data rate, the ard must be 500µS or more. If the custom ACK
payload is more than 5 bytes in 1 Mbps data rate, the ard must be 500µS or more.
In 250kbps data rate (even when there is no custom ACK payload) the ard must be
500µS or more.

See data_rate attribute on how to set the data rate of the nRF24L01’s transmissions.




Changed in version 2.0.0: Invalid input values are clamped to proper range instead of throwing a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
exception.








	
RF24.set_auto_retries(delay: int [https://docs.python.org/3/library/functions.html#int], count: int [https://docs.python.org/3/library/functions.html#int])

	set the ard & arc attributes with 1 function.


	Parameters

	
	delay : int [https://docs.python.org/3/library/functions.html#int]
	accepts the same input as the ard attribute.



	count : int [https://docs.python.org/3/library/functions.html#int]
	accepts the same input as the arc attribute.














	
RF24.get_auto_retries() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	get the ard & arc attributes with 1 function.


	Return

	A tuple containing 2 items; index 0 will be the ard attribute,
and index 1 will be the arc attribute.













            

          

      

      

    

  

    
      
          
            
  
BLE API


New in version 1.2.0: BLE API added




BLE Limitations

This module uses the RF24 class to make the nRF24L01 imitate a
Bluetooth-Low-Emissions (BLE) beacon. A BLE beacon can send data (referred to as
advertisements) to any BLE compatible device (ie smart devices with Bluetooth
4.0 or later) that is listening.

Original research was done by Dmitry Grinberg and his write-up (including C
source code) can be found here [http://dmitry.gr/index.php?r=05.Projects&proj=11.%20Bluetooth%20LE%20fakery]
As this technique can prove invaluable in certain project designs, the code
here has been adapted to work with CircuitPython.


Important

Because the nRF24L01 wasn’t designed for BLE advertising, it
has some limitations that helps to be aware of.


	The maximum payload length is shortened to 18 bytes (when not
broadcasting a device
name nor
the nRF24L01
show_pa_level).
This is calculated as:

32 (nRF24L01 maximum) - 6 (MAC address) - 5 (required
flags) - 3 (CRC checksum) = 18

Use the helper function
len_available() to
determine if your payload can be transmit.



	the channels that BLE use are limited to the following three: 2.402
GHz, 2.426 GHz, and 2.480 GHz. We have provided a tuple of these
specific channels for convenience (See BLE_FREQ and hop_channel()).


	crc is disabled in the
nRF24L01 firmware because BLE  specifications require 3 bytes
(crc24_ble()), and the
nRF24L01 firmware can only handle a maximum of 2.
Thus, we have appended the required 3 bytes of CRC24 into the payload.


	address_length of BLE
packet only uses 4 bytes, so we have set that accordingly.


	The auto_ack (automatic
acknowledgment) feature of the nRF24L01 is useless when transmitting to
BLE devices, thus it is disabled as well as automatic re-transmit
(arc) and custom ACK
payloads (ack) features
which both depend on the automatic acknowledgments feature.


	The dynamic_payloads
feature of the nRF24L01 isn’t compatible with BLE specifications. Thus,
we have disabled it.


	BLE specifications only allow using 1 Mbps RF
data_rate, so that too has
been hard coded.


	Only the “on data sent”
(irq_ds) & “on data ready”
(irq_dr) events will have
an effect on the interrupt (IRQ) pin. The “on data fail”
(irq_df) is never
triggered because
auto_ack attribute is disabled.








fake_ble module helpers


	
circuitpython_nrf24l01.fake_ble.swap_bits(original: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	This function reverses the bit order for a single byte.


	Returns

	An int [https://docs.python.org/3/library/functions.html#int] containing the byte whose bits are reversed
compared to the value passed to the original parameter.



	Parameters

	
	original : int [https://docs.python.org/3/library/functions.html#int]
	This is truncated to a single unsigned byte,
meaning this parameter’s value can only range from 0 to 255.














	
circuitpython_nrf24l01.fake_ble.reverse_bits(original: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	This function reverses the bit order for an entire buffer protocol object.


	Returns

	A bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] whose byte order remains the same, but each
byte’s bit order is reversed.



	Parameters

	
	original : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	The original buffer whose bits are to be
reversed.














	
circuitpython_nrf24l01.fake_ble.chunk(buf: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], data_type: int [https://docs.python.org/3/library/functions.html#int] = 22) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	This function is used to pack data values into a block of data that
make up part of the BLE payload per Bluetooth Core Specifications.


	Parameters

	
	buf : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	The actual data contained in the block.



	data_type : int [https://docs.python.org/3/library/functions.html#int]
	The type of data contained in the chunk. This is a
predefined number according to BLE specifications. The default value
0x16 describes all service data. 0xFF describes manufacturer
information. Any other values are not applicable to BLE
advertisements.










Important

This function is called internally by
advertise().
To pack multiple data values into a single payload, use this function
for each data value and pass a list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of the returned
results to
advertise()
(see example code in documentation about
advertise()
for more detail). Remember that broadcasting multiple data values may
require the name
be set to None [https://docs.python.org/3/library/constants.html#None] and/or the
show_pa_level be
set to False [https://docs.python.org/3/library/constants.html#False] for reasons about the payload size with
BLE Limitations.








	
circuitpython_nrf24l01.fake_ble.crc24_ble(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], deg_poly: int [https://docs.python.org/3/library/functions.html#int] = 1627, init_val: int [https://docs.python.org/3/library/functions.html#int] = 5592405) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	This function calculates a checksum of various sized buffers.

This is exposed for convenience and should not be used for other buffer
protocols that require big endian CRC24 format.


	Parameters

	
	data : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	The buffer of data to be uncorrupted.



	deg_poly : int [https://docs.python.org/3/library/functions.html#int]
	A preset “degree polynomial” in which each bit
represents a degree who’s coefficient is 1. BLE specifications require
0x00065b (default value).



	init_val : int [https://docs.python.org/3/library/functions.html#int]
	This will be the initial value that the checksum
will use while shifting in the buffer data. BLE specifications require
0x555555 (default value).







	Returns

	A 24-bit bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] representing the checksum of the data (in
proper little endian).










	
circuitpython_nrf24l01.fake_ble.whitener(buf: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], coef: int [https://docs.python.org/3/library/functions.html#int]) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Whiten and de-whiten data according to the given coefficient.

This is a helper function to FakeBLE.whiten(). It has been broken out of the
FakeBLE class to allow whitening and dewhitening a BLE payload without the
hardcoded coefficient.


	Parameters

	
	buf : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The BLE payloads data. This data should include the
CRC24 checksum.



	coef : int [https://docs.python.org/3/library/functions.html#int]
	The whitening coefficient used to avoid repeating binary patterns.
This is the index of BLE_FREQ tuple for nRF24L01 channel that the payload transits
(plus 37).

coef = None  # placeholder for the coefficient
rx_channel = nrf.channel
for index, chl in enumerate(BLE_FREQ):
    if chl == rx_channel:
        coef = index + 37
        break






Note

If currently used nRF24L01 channel is different from the channel in which the
payload was received, then set this parameter accordingly.


















	
circuitpython_nrf24l01.fake_ble.BLE_FREQ = (2, 26, 80)

	The BLE channel number is different from the nRF channel number.

This tuple contains the relative predefined channels used:







	nRF24L01 channel

	BLE channel





	2

	37



	26

	38



	80

	39












QueueElement class


New in version 2.1.0: This class was added when implementing BLE signal sniffing.




	
class circuitpython_nrf24l01.fake_ble.QueueElement(buffer: bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray])

	A data structure used for storing received & decoded BLE payloads in
the rx_queue.


	Parameters

	
	buffer : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	the validated BLE payload (not including
the CRC checksum). The buffer passed here is decoded into this class’s
properties.










	
mac

	The transmitting BLE device’s MAC address as a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.






	
name

	The transmitting BLE device’s name. This will be a str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object (if
a UnicodeError [https://docs.python.org/3/library/exceptions.html#UnicodeError] was caught), or None [https://docs.python.org/3/library/constants.html#None] (if not included in the received
payload).






	
pa_level

	The transmitting device’s PA Level (if included in the received payload)
as an int [https://docs.python.org/3/library/functions.html#int].


Note

This value does not represent the received signal strength.
The nRF24L01 will receive anything over a -64 dbm threshold.








	
data : list [https://docs.python.org/3/library/stdtypes.html#list][bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], 'ServiceData']

	A list [https://docs.python.org/3/library/stdtypes.html#list] of the transmitting device’s data structures (if any).
If an element in this list [https://docs.python.org/3/library/stdtypes.html#list] is not an instance (or descendant) of the
ServiceData class, then it is likely a custom, user-defined, or unsupported
specification - in which case it will be a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] object.











FakeBLE class


	
class circuitpython_nrf24l01.fake_ble.FakeBLE(spi: busio.SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI], csn: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], ce_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], spi_frequency: int [https://docs.python.org/3/library/functions.html#int] = 10000000)

	Bases: RF24

A class to implement BLE advertisements using the nRF24L01.

Per the limitations of this technique, only some of underlying
RF24 functionality is
available for configuration when implementing BLE transmissions.
See the Unavailable RF24 functionality for more details.


See also

For all parameters’ descriptions, see the
RF24 class’ constructor documentation.








	
FakeBLE.mac

	This attribute returns a 6-byte buffer that is used as the
arbitrary mac address of the BLE device being emulated.

You can set this attribute using a 6-byte int [https://docs.python.org/3/library/functions.html#int] or bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]. If this is
set to None [https://docs.python.org/3/library/constants.html#None], then a random 6-byte address is generated.






	
FakeBLE.name

	The broadcasted BLE name of the nRF24L01.

This is not required. In fact, setting this attribute will subtract from
the available payload length (in bytes). Set this attribute to None [https://docs.python.org/3/library/constants.html#None] to
disable advertising the device name.

Valid inputs are str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], or None [https://docs.python.org/3/library/constants.html#None]. A str [https://docs.python.org/3/library/stdtypes.html#str] will be converted to
a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object automatically.


Note

This information occupies (in the TX FIFO) an extra 2 bytes plus
the length of the name set by this attribute.




Changed in version 2.2.0: This attribute can also be set with a str [https://docs.python.org/3/library/stdtypes.html#str], but it must be UTF-8 compatible.








	
FakeBLE.show_pa_level

	If this attribute is True [https://docs.python.org/3/library/constants.html#True], the payload will automatically include
the nRF24L01’s pa_level in the
advertisement.

The default value of False [https://docs.python.org/3/library/constants.html#False] will exclude this optional information.


Note

This information occupies (in the TX FIFO) an extra 3 bytes, and is
really only useful for some applications to calculate proximity to the
nRF24L01 transceiver.








	
FakeBLE.channel

	This int [https://docs.python.org/3/library/functions.html#int] attribute specifies the nRF24L01’s frequency.

The only allowed channels are those contained in the BLE_FREQ tuple.


Changed in version 2.1.0: Any invalid input value (that is not found in BLE_FREQ) had raised a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception. This behavior changed to ignoring invalid input values,
and the exception is no longer raised.








	
FakeBLE.hop_channel()

	Trigger an automatic change of BLE compliant channels.






	
FakeBLE.whiten(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Whitening the BLE packet data ensures there’s no long repetition
of bits.

This is done according to BLE specifications.


	Parameters

	
	data : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	The packet to whiten.







	Returns

	A bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] of the data with the whitening algorithm
applied.






Note

advertise() and
available() uses
this function internally to prevent improper usage.




Warning

This function uses the currently set BLE channel as a
base case for the whitening coefficient.

Do not call hop_channel() before calling
available()
because this function needs to know the correct BLE channel to
properly de-whiten received payloads.








	
FakeBLE.len_available(hypothetical: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] = b'') → int [https://docs.python.org/3/library/functions.html#int]

	This function will calculates how much length (in bytes) is
available in the next payload.

This is determined from the current state of name and show_pa_level
attributes.


	Parameters

	
	hypothetical : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray],bytes [https://docs.python.org/3/library/stdtypes.html#bytes]
	Pass a potential chunk() of
data to this parameter to calculate the resulting left over length
in bytes. This parameter is optional.







	Returns

	An int [https://docs.python.org/3/library/functions.html#int] representing the length of available bytes for
a single payload.






Changed in version 2.0.0: The name of this function changed from “available” to “len_available” to avoid confusion with
circuitpython_nrf24l01.rf24.RF24.available(). This change also
allows providing the underlying RF24 class’
available() method in the
FakeBLE API.








	
FakeBLE.advertise(buf: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] = b'', data_type: int [https://docs.python.org/3/library/functions.html#int] = 255)

	This blocking function is used to broadcast a payload.


	Returns

	Nothing as every transmission will register as a success
under the required settings for BLE beacons.



	Parameters

	
	buf : bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The payload to transmit. This bytearray must have
a length greater than 0 and less than 22 bytes Otherwise a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] exception is thrown whose prompt will tell you the
maximum length allowed under the current configuration. This can
also be a list or tuple of payloads (bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]); in which case,
all items in the list/tuple are processed are packed into 1
payload for a single transmissions. See example code below about
passing a list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] to this parameter.



	data_type : int [https://docs.python.org/3/library/functions.html#int]
	This is used to describe the buffer data passed
to the buf parameter. 0x16 describes all service data. The
default value 0xFF describes manufacturer information. This
parameter is ignored when a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list [https://docs.python.org/3/library/stdtypes.html#list] is passed to the
buf parameter. Any other values are not applicable to BLE
advertisements.










Important

If the name and/or TX power level of the emulated BLE
device is also to be broadcast, then the name and/or
show_pa_level attribute(s) should be set prior to calling
advertise().



To pass multiple data values to the buf parameter see the
following code as an example:

# let UUIDs be the 16-bit identifier that corresponds to the
# BLE service type. The following values are not compatible with
# BLE advertisements.
UUID_1 = 0x1805
UUID_2 = 0x1806
service1 = ServiceData(UUID_1)
service2 = ServiceData(UUID_2)
service1.data = b"some value 1"
service2.data = b"some value 2"

# make a tuple of the buffers
buffers = (
    chunk(service1.buffer),
    chunk(service2.buffer)
)

# let `ble` be the instantiated object of the FakeBLE class
ble.advertise(buffers)
ble.hop_channel()










	
FakeBLE.available() → bool [https://docs.python.org/3/library/functions.html#bool]

	A bool [https://docs.python.org/3/library/functions.html#bool] describing if there is a payload in the rx_queue.

This method will take the first available data from the radio’s RX FIFO and
validate the payload using the 24bit CRC checksum at the end of the payload.
If the payload is indeed a valid BLE transmission that fit within the 32 bytes
that the nRF24L01 can capture, then this method will decipher the data within
the payload and enqueue the resulting QueueElement in the rx_queue.


Tip

Use read() to fetch the
decoded data.




	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] if payload was received and validated


	False [https://docs.python.org/3/library/constants.html#False] if no payload was received or the received payload could not be
deciphered.









Changed in version 2.1.0: This was an added override to validate & decipher received BLE data.








	
FakeBLE.rx_queue

	The internal queue of received BLE payloads’ data.

Each Element in this queue is a QueueElement object whose members are set according to the
its internal decoding algorithm. The read()
function will remove & return the first element in this queue.


Hint

This attribute is exposed for debugging purposes, but it can also be used by applications.




New in version 2.1.0.








	
FakeBLE.rx_cache

	The internal cache used when validating received BLE payloads.

This attribute is only used by available()
to cache the data from the top level of the radio’s RX FIFO then validate & decode it.


Hint

This attribute is exposed for debugging purposes.




New in version 2.1.0.








	
FakeBLE.read() → QueueElement

	Get the First Out element from the queue.


	Returns

	
	None [https://docs.python.org/3/library/constants.html#None] if nothing is the internal rx_queue


	A QueueElement object from the front of the rx_queue (like a FIFO buffer)









Changed in version 2.1.0: This was an added override to fetch deciphered BLE data from the rx_queue.








	
FakeBLE.interrupt_config(data_recv: bool [https://docs.python.org/3/library/functions.html#bool] = True, data_sent: bool [https://docs.python.org/3/library/functions.html#bool] = True, data_fail: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Sets the configuration of the nRF24L01’s IRQ pin. (write-only)


Warning

The irq_df
attribute is not implemented for BLE operations.




See also

interrupt_config()








Unavailable RF24 functionality

The following RF24 functionality is not available in FakeBLE objects:


	dynamic_payloads


	set_dynamic_payloads()


	data_rate


	address_length


	auto_ack


	set_auto_ack()


	ack


	crc


	open_rx_pipe()


	open_tx_pipe()







Service related classes


Abstract Parent


	
class circuitpython_nrf24l01.fake_ble.ServiceData(uuid: int [https://docs.python.org/3/library/functions.html#int])

	An abstract helper class to package specific service data using
Bluetooth SIG defined 16-bit UUID flags to describe the data type.


	Parameters

	
	uuid : int [https://docs.python.org/3/library/functions.html#int]
	The 16-bit UUID “GATT Service assigned number” [https://specificationrefs.bluetooth.com/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf#page=19] defined by the
Bluetooth SIG to describe the service data. This parameter is
required.










	
property uuid : bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	This returns the 16-bit Service UUID as a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] in little
endian. (read-only)






	
property data : bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	This attribute is a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.






	
property buffer : bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Get the representation of the instantiated object as an
immutable bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object (read-only).






	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	For convenience, this class is compatible with python’s builtin
len() [https://docs.python.org/3/library/functions.html#len] method. In this context, this will return the length
of the object (in bytes) as it would appear in the advertisement
payload.






	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	For convenience, this class is compatible with python’s builtin
repr() [https://docs.python.org/3/library/functions.html#repr] method. In this context, it will return a string of
data with applicable suffixed units.











Service data UUID numbers

These are the 16-bit UUID numbers used by the
Derivative Children of the ServiceData class


	
circuitpython_nrf24l01.fake_ble.TEMPERATURE_UUID = 0x1809

	The Temperature Service UUID number






	
circuitpython_nrf24l01.fake_ble.BATTERY_UUID = 0x180F

	The Battery Service UUID number






	
circuitpython_nrf24l01.fake_ble.EDDYSTONE_UUID = 0xFEAA

	The Eddystone Service UUID number







Derivative Children


	
class circuitpython_nrf24l01.fake_ble.TemperatureServiceData

	Bases: ServiceData

This derivative of the ServiceData class can be used to represent
temperature data values as a float [https://docs.python.org/3/library/functions.html#float] value.


See also

Bluetooth Health Thermometer Measurement format as defined in the
GATT Specifications Supplement. [https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=502132&vId=542989]




	
property data : float [https://docs.python.org/3/library/functions.html#float]

	This attribute is a float [https://docs.python.org/3/library/functions.html#float] value.










	
class circuitpython_nrf24l01.fake_ble.BatteryServiceData

	Bases: ServiceData

This derivative of the ServiceData class can be used to represent
battery charge percentage as a 1-byte value.


See also

The Bluetooth Battery Level format as defined in the
GATT Specifications Supplement. [https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=502132&vId=542989]




	
property data : int [https://docs.python.org/3/library/functions.html#int]

	The attribute is a 1-byte unsigned int [https://docs.python.org/3/library/functions.html#int] value.










	
class circuitpython_nrf24l01.fake_ble.UrlServiceData

	Bases: ServiceData

This derivative of the ServiceData class can be used to represent
URL data as a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] value.


See also

Google’s Eddystone-URL specifications [https://github.com/google/eddystone/tree/master/eddystone-url].




	
property pa_level_at_1_meter : int [https://docs.python.org/3/library/functions.html#int]

	The TX power level (in dBm) at 1 meter from the nRF24L01. This
defaults to -25 (due to testing when broadcasting with 0 dBm) and must
be a 1-byte signed int [https://docs.python.org/3/library/functions.html#int].






	
property data : str [https://docs.python.org/3/library/stdtypes.html#str]

	This attribute is a str [https://docs.python.org/3/library/stdtypes.html#str] of URL data.














            

          

      

      

    

  

    
      
          
            
  
Network Topology


Network Levels

Because of the hardware limitation’s of the nRF24L01 transceiver, each network
is arranged in a levels where a parent can have up to 5 children. And each child can also have
up to 5 other children. This is not limitless because this network is designed for low-memory
devices. Consequently, all node’s Logical Address are limited to 12-bit
integers and use an octal counting scheme.


	The master node (designated with the Logical Address 0o0)
is always the only node in the lowest level (denoted as level 0).


	Child nodes are designated by the most significant octal digit in their
Logical Address. A child node address’ least significant digits are
the inherited address of it’s parent node. Nodes on level 1 only have 1 digit because they are
children of the master node.




[image: graph network_hierarchy {     bgcolor="#323232A1"     newrank=true     // ratio="0.65"     node [         fontcolor="#FEFEFE"         fontsize=14         fontname=Arial     ]     pad="0"     margin="0"     subgraph cluster_hierarchy {         bgcolor="#24242400"         color="#24242400"         node [             style=filled             color="#FEFEFE7f"         ]         edge [color="#FEFEFE" style="setlinewidth(2)"]         subgraph lvl_0 {             "0o0" [                 shape="circle"                 style="radial"                 fillcolor="0.85:#018268;0:#000"             ]         }         subgraph lvl_1 {             node [fillcolor="#3E0180"]             "0o1" "0o2" "0o3" "0o4" "0o5"         }         subgraph lvl_2 {             node [fillcolor="#014B80"]             "0o14" "0o24" "0o34" "0o44" "0o54"         }         subgraph lvl_3 {             node [fillcolor="#0E6902"]             "0o124" "0o224" "0o324" "0o424" "0o524"         }         subgraph lvl_4 {             node [fillcolor="#80010B"]             "0o1324" "0o2324" "0o3324" "0o4324" "0o5324"         }         "0o0" -- "0o4" -- "0o24" -- "0o324" -- "0o1324"         "0o0" -- "0o1"; "0o0" -- "0o2"; "0o0" -- "0o3"; "0o0" -- "0o5"         "0o4" -- "0o14"; "0o4" -- "0o34"; "0o4" -- "0o44"; "0o4" -- "0o54"         "0o24" -- "0o124"; "0o24" -- "0o224"; "0o24" -- "0o424"; "0o24" -- "0o524"         "0o324" -- "0o2324"; "0o324" -- "0o3324"; "0o324" -- "0o4324"; "0o324" -- "0o5324"     }     subgraph cluster_legend {         bgcolor="#242424"         color="#24242400"         "Legend" [             color="#FEF9A9"             shape=plain             margin=0             label=<                     <TABLE CELLBORDER="0" CELLSPACING="8">                         <TR>                             <TD BORDER="1" SIDES="B" COLSPAN="3">Legend</TD>                         </TR>                         <TR>                             <TD>Network Level 0</TD>                             <TD BORDER="1" STYLE="rounded,radial" BGCOLOR="#000:#018268">        </TD>                         </TR>                         <TR>                             <TD>Network Level 1</TD>                             <TD BORDER="1" STYLE="rounded" BGCOLOR="#3E0180">        </TD>                         </TR>                         <TR>                             <TD>Network Level 2</TD>                             <TD BORDER="1" STYLE="rounded" BGCOLOR="#014B80">        </TD>                         </TR>                         <TR>                             <TD>Network Level 3</TD>                             <TD BORDER="1" STYLE="rounded" BGCOLOR="#0E6902">        </TD>                         </TR>                         <TR>                             <TD>Network Level 4</TD>                             <TD BORDER="1" STYLE="rounded" BGCOLOR="#80010B">        </TD>                         </TR>                         <TR>                             <TD BORDER="1" SIDES="T" COLSPAN="3">Nodes are labeled<BR/>in octal numbers</TD>                         </TR>                     </TABLE>             >         ]     } }]

Hopefully, you should see the pattern. There can be up to a maximum of 5 network levels (that’s
0-4 ordered from lowest to highest).

For a message to travel from node 0o124 to node 0o3, it must be passed through any applicable
network levels. So, the message flows 0o124 -> 0o24 -> 0o4 -> 0o0 -> 0o3.

A single network can potentially have a maximum of 781 nodes (all operating on the same
channel), but for readability reasons, the following
graph only demonstrates


	the master node (level 0) and it’s 5 children (level 1)


	level 2 only shows the 1st and 2nd children of parents on level 1


	level 3 only shows the 3rd and 4th children of parents on level 2


	level 4 only shows the 5th children of parents on level 3




[image: graph network_levels {     layout=twopi     bgcolor="#323232A1"     ratio="0.825"     node [         style=filled         fontcolor="#FEFEFE"         color="#FEFEFE7f"         fontsize=14         fontname=Arial     ]     edge [color="#FEFEFE" style="setlinewidth(2)"]     ranksep="0.85:0.9:0.95:1.1"     subgraph lvl_0 {         "0o0" [             root=true             shape="circle"             style="radial"             fillcolor="0.9:#018268;0:#000"         ]     }     subgraph lvl_1 {         node [fillcolor="#3E0180"]         "0o1" "0o2" "0o3" "0o4" "0o5"     }     subgraph lvl_2 {         node [fillcolor="#014B80"]         "0o11" "0o21" "0o12" "0o22" "0o13" "0o23" "0o14" "0o24" "0o15" "0o25"     }     subgraph lvl_3 {         node [fillcolor="#0E6902"]         "0o311" "0o411" "0o321" "0o421" "0o312" "0o412" "0o322" "0o422" "0o313" "0o413"         "0o323" "0o423" "0o314" "0o414" "0o324" "0o424" "0o315" "0o415" "0o325" "0o425"     }     subgraph lvl_4 {         node [fillcolor="#80010B"]         "0o5311" "0o5411" "0o5321" "0o5312" "0o5421" "0o5313" "0o5314" "0o5315" "0o5322"         "0o5323" "0o5324" "0o5325" "0o5412" "0o5423" "0o5422" "0o5413" "0o5414" "0o5424"         "0o5415" "0o5425"     }     "0o0" -- "0o1" -- "0o11" -- "0o311" -- "0o5311"     "0o0" -- "0o2" -- "0o12" -- "0o312" -- "0o5312"     "0o0" -- "0o3" -- "0o13" -- "0o313" -- "0o5313"     "0o0" -- "0o4" -- "0o14" -- "0o314" -- "0o5314"     "0o0" -- "0o5" -- "0o15" -- "0o315" -- "0o5315"     "0o1" -- "0o21" -- "0o321" -- "0o5321"     "0o2" -- "0o22" -- "0o322" -- "0o5322"     "0o3" -- "0o23" -- "0o323" -- "0o5323"     "0o4" -- "0o24" -- "0o324" -- "0o5324"     "0o5" -- "0o25" -- "0o325" -- "0o5325"     "0o11" -- "0o411" -- "0o5411"     "0o21" -- "0o421" -- "0o5421"     "0o12" -- "0o412" -- "0o5412"     "0o22" -- "0o422" -- "0o5422"     "0o13" -- "0o413" -- "0o5413"     "0o23" -- "0o423" -- "0o5423"     "0o14" -- "0o414" -- "0o5414"     "0o24" -- "0o424" -- "0o5424"     "0o15" -- "0o415" -- "0o5415"     "0o25" -- "0o425" -- "0o5425" }]



Physical addresses vs Logical addresses


	The Physical address is the 5-byte address assigned to the radio’s data pipes.


	The Logical address is the 12-bit integer representing a network node.
The Logical address uses an octal counting scheme. A valid Logical Address must only
contain octal digits in range [1, 5]. The master node is the exception for it uses the
number 0


Tip

Use the is_address_valid() function to programmatically check a Logical Address for validity.








Note

Remember that the nRF24L01 only has 6 data pipes for which to receive or transmit.
Since only data pipe 0 can be used to transmit, the other other data pipes 1-5 are
devoted to receiving transmissions from other network nodes; data pipe 0 also receives
multicasted messages about the node’s network level).




Translating Logical to Physical

Before translating the Logical address, a single byte is used repetitively as the
base case for all bytes of any Physical Address. This byte is the address_prefix
attribute (stored as a mutable bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) in the RF24Network class. By default the
address_prefix has a single byte value of b"\xCC".

The RF24Network class also has a predefined list of bytes used for translating
unique Logical addresses into unique Physical addresses. This list is called
address_suffix (also stored as a mutable bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]). By default the address_suffix
has 6-byte value of b"\xC3\x3C\x33\xCE\x3E\xE3" where the order of bytes pertains to the
data pipe number and child node’s most significant byte in its Physical Address.


	For example:
	The Logical Address of the network’s master node is 0. The radio’s pipes
1-5 start with the address_prefix. To make each pipe’s Physical address unique
to a child node’s Physical address, the address_suffix is used.

The Logical address of the master node: 0o0







	pipe

	Physical Address (hexadecimal)





	1

	CC CC CC CC 3C



	2

	CC CC CC CC 33



	3

	CC CC CC CC CE



	4

	CC CC CC CC 3E



	5

	CC CC CC CC E3






The Logical address of the master node’s first child: 0o1







	pipe

	Physical Address (hexadecimal)





	1

	CC CC CC 3C 3C



	2

	CC CC CC 3C 33



	3

	CC CC CC 3C CE



	4

	CC CC CC 3C 3E



	5

	CC CC CC 3C E3






The Logical address of the master node’s second child: 0o2







	pipe

	Physical Address (hexadecimal)





	1

	CC CC CC 33 3C



	2

	CC CC CC 33 33



	3

	CC CC CC 33 CE



	4

	CC CC CC 33 3E



	5

	CC CC CC 33 E3






The Logical address of the master node’s third child’s second child’s first child: 0o123







	pipe

	Physical Address (hexadecimal)





	1

	CC 3C 33 CE 3C



	2

	CC 3C 33 CE 33



	3

	CC 3C 33 CE CE



	4

	CC 3C 33 CE 3E



	5

	CC 3C 33 CE E3












Two networks coexisting on the same channel


Warning

The following section is an advanced tutorial. The default values for address_prefix
and address_suffix were carefully chosen by TMRh20 to demonstrate best practices in
terms of choosing a data pipe’s address for transmissions. Bad practices can be avoided
by heeding ManiacBug’s advice in his
detailed blog post [http://maniacalbits.blogspot.com/2013/04/rf24-addressing-nrf24l01-radios-require.html]
about the topic.



In theory, the address_prefix and address_suffix attributes could be changed to
allow 2 separate networks to coexist on the same
channel. The following are example code
snippets to use as a template for such a scenario.


Master node for network_a

from circuitpython_nrf24l01.rf24_network import RF24Network

# ... declare SPI_BUS, CE_PIN, and CSN_PIN objects
network_a_master = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 0)

# let network_a use the default values for address_prefix and address_suffix

while True:
    network_a_master.update()
    if network_a_master.available():
        recv_frame = network_a_master.read()
        print(
            "received {}: {}".format(
                recv_frame.header.to_string(), recv_frame.message.decode()
            )
        )
    # emit frames as needed








Master node for network_b

from circuitpython_nrf24l01.rf24_network import RF24Network

# ... declare SPI_BUS, CE_PIN, and CSN_PIN objects
network_b_master = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 0)

# let network_b use different values for address_prefix and address_suffix
network_b_master.address_prefix = bytearray([0xDB])
network_b_master.address_suffix = bytearray([0xDD, 0x99, 0xB6, 0xD9, 0x9D, 0x66])

# re-assign the node_address for the different physical addresses to be used
network_b_master.node_address = 0

while True:
    network_b_master.update()
    if network_b_master.available():
        recv_frame = network_b_master.read()
        print(
            "received {}: {}".format(
                recv_frame.header.to_string(), recv_frame.message.decode()
            )
        )
    # emit frames as needed








A single network node for hoping between  network_a & network_b

from circuitpython_nrf24l01.rf24_network import RF24Network

# ... declare SPI_BUS, CE_PIN, and CSN_PIN objects
network_b_node = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 5)
network_a_node = RF24Network(SPI_BUS, CSN_PIN, CE_PIN, 1)

# let network_b use different values for address_prefix and address_suffix
with network_b_node as net_b:
    net_b.address_prefix = bytearray([0xDB])
    net_b.address_suffix = bytearray([0xDD, 0x99, 0xB6, 0xD9, 0x9D, 0x66])

    # re-assign the node_address for the different physical addresses to be used
    net_b.node_address = 5

while True:
    # do something with network_a
    with network_a_node as net_a:
        net_a.update()
        net_a.send(RF24NetworkHeader(0, "T"), b"data for net A master")

    # do something with network_b
    with network_b_node as net_b:
        net_b.update()
        net_b.send(RF24NetworkHeader(0, "T"), b"data for net B master")










RF24Mesh connecting process

As noted above, a single network can have up to 781 nodes. This number also includes
up to 255 RF24Mesh nodes. The key difference from the user’s perspective is that RF24Mesh
API does not use a Logical Address. Instead the RF24Mesh API relies on
a node_id number to identify a RF24Mesh node that may use a different
Logical Address (which can change based on the node’s physical location).


Important

Any network that will use RF24mesh for a child node needs to have a RF24Mesh
master node. This will not interfere with RF24Network nodes since the RF24Mesh API
is layered on top of the RF24Network API.



To better explain the difference between a node’s node_address vs a node’s node_id,
we will examine the connecting process for a RF24Mesh node. These are the steps performed
when calling renew_address():


	Any RF24Mesh node not connected to a network will use the Logical Address
0o444 (that’s 2340 in decimal). It is up to the network administrator to ensure that
each RF24Mesh node has a unique node_id (which is limited to the range [0, 255]).


Hint

Remember that 0 is reserved the master node’s node_id.





	To get assigned a Logical Address, an unconnected node must poll the
network for a response (using a NETWORK_POLL message). Initially this happens on the
network level 0, but consecutive attempts will poll higher network levels (in order of low to
high) if this process fails.


	When a polling transmission is responded, the connecting mesh node sends an address
request which gets forwarded to the master node when necessary (using a
MESH_ADDR_REQUEST message).


	The master node will process the address request and respond with a node_address
(using a MESH_ADDR_RESPONSE message). If there is no available occupancy on the
network level from which the address request originated, then the master node will
respond with an invalid Logical Address.


	Once the requesting node receives the address response (and the assigned address is
valid), it assumes that as the node_address while maintaining its node_id.


	The connecting node will verify its new address by calling check_connection.


	If the assigned address is invalid or check_connection() returns False [https://docs.python.org/3/library/constants.html#False], then
the connecting node will re-start the process (step 1) on a different network level.









Points of failure

This process happens over a span of a few milliseconds. However,


	If the connecting node is physically moving throughout the network very quickly,
then this process will take longer and is likely to fail.


	If a master node is able to respond faster than the connecting node can prepare itself
to receive, then the process will fail entirely. This failure about faster master
nodes often results in some slower RF24Mesh nodes only being able to connect to the
network through another non-master node.




If you run into trouble with this connection process, then please
open an issue on github [https://github.com/nRF24/CircuitPython_nRF24L01/issues]
and describe the situation with as much detail as possible.






            

          

      

      

    

  

    
      
          
            
  
Network Data Structures


New in version 2.1.0.



These classes are used to structure the payload data for wireless network transactions.


Header


	
class circuitpython_nrf24l01.network.structs.RF24NetworkHeader(to_node: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, message_type: str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	The header information used for routing network messages.


	Parameters

	
	to_node : int [https://docs.python.org/3/library/functions.html#int]
	The Logical Address designating the
message’s destination.



	message_type : int [https://docs.python.org/3/library/functions.html#int],str [https://docs.python.org/3/library/stdtypes.html#str]
	A 1-byte int [https://docs.python.org/3/library/functions.html#int] representing the message_type. If a
str [https://docs.python.org/3/library/stdtypes.html#str] is passed, then the first character’s numeric ASCII representation is
used.










Note

These parameters can be left unspecified to create a blank
object that can be augmented after instantiation.








	
RF24NetworkHeader.to_node

	This value is truncated to a 2-byte unsigned int [https://docs.python.org/3/library/functions.html#int].

Describes the message destination using a Logical Address.






	
RF24NetworkHeader.from_node

	This value is truncated to a 2-byte unsigned int [https://docs.python.org/3/library/functions.html#int].

Describes the message origin using a Logical Address.






	
RF24NetworkHeader.message_type

	The type of message.

This int [https://docs.python.org/3/library/functions.html#int] must be less than 256. When set using a str [https://docs.python.org/3/library/stdtypes.html#str], this attribute’s int [https://docs.python.org/3/library/functions.html#int] value is
derived from the ASCII number of the string’s first character (see ord() [https://docs.python.org/3/library/functions.html#ord]).
Non-ASCII characters’ values are truncated to 1 byte (see str.isascii() [https://docs.python.org/3/library/stdtypes.html#str.isascii]). A blank
str [https://docs.python.org/3/library/stdtypes.html#str] sets this attribute’s value to 0.


Hint

Users are encouraged to specify a number in range [0, 127] (basically less
than or equal to MAX_USR_DEF_MSG_TYPE) as there are
Reserved Message Types.








	
RF24NetworkHeader.frame_id

	This value is truncated to a 2-byte unsigned int [https://docs.python.org/3/library/functions.html#int].

The sequential identifying number for the frame (relative to the originating
network node). Each sequential frame’s ID is incremented, but frames containing
fragmented messages have the same ID number.






	
RF24NetworkHeader.reserved

	A single byte reserved for network usage.

This will be the sequential ID number for fragmented messages, but on the last message
fragment, this will be the message_type. RF24Mesh will also use this attribute to
hold a newly assigned network Logical Address for
MESH_ADDR_RESPONSE messages.






	
RF24NetworkHeader.unpack(buffer) → bool [https://docs.python.org/3/library/functions.html#bool]

	Decode header data from the first 8 bytes of a frame’s buffer.

This function is meant for library internal usage.


	Parameters

	
	buffer : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The buffer to unpack. All resulting data is stored in the
objects attributes accordingly.







	Returns

	True [https://docs.python.org/3/library/constants.html#True] if successful; otherwise False [https://docs.python.org/3/library/constants.html#False].










	
RF24NetworkHeader.pack() → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	This function is meant for library internal usage.


	Returns

	The entire header as a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.










	
RF24NetworkHeader.to_string() → str [https://docs.python.org/3/library/stdtypes.html#str]

	
	Returns

	A str [https://docs.python.org/3/library/stdtypes.html#str] describing all of the header’s attributes.











Frame


	
class circuitpython_nrf24l01.network.structs.RF24NetworkFrame(header: RF24NetworkHeader | None [https://docs.python.org/3/library/constants.html#None] = None, message: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Structure of a single frame.

This is used for either a single fragment of an individually large message (greater than 24
bytes) or a single message that is less than 25 bytes.


	Parameters

	
	header : RF24NetworkHeader
	The header describing the frame’s message.



	message : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The actual message containing the payload
or a fragment of a payload.










Note

These parameters can be left unspecified to create a blank
object that can be augmented after instantiation.








	
RF24NetworkFrame.header

	The RF24NetworkHeader about the frame’s message.






	
RF24NetworkFrame.message

	The entire message or a fragment of a message allocated to the frame.

This attribute is typically a bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.






	
RF24NetworkFrame.unpack(buffer: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Decode the header & message from a buffer.

This function is meant for library internal usage.


	Parameters

	
	buffer : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The buffer to unpack. All resulting data is stored in the
objects attributes accordingly.







	Returns

	True [https://docs.python.org/3/library/constants.html#True] if successful; otherwise False [https://docs.python.org/3/library/constants.html#False].










	
RF24NetworkFrame.pack() → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	This attribute is meant for library internal usage.


	Returns

	The entire object as a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.










	
RF24NetworkFrame.is_ack_type() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the frame is to expect a NETWORK_ACK message.

This function  is meant for library internal usage.







FrameQueue


	
class circuitpython_nrf24l01.network.structs.FrameQueue(queue=None)

	A class that wraps a list [https://docs.python.org/3/library/stdtypes.html#list] with RF24Network Queue behavior.


	Parameters

	
	queue : FrameQueue,FrameQueueFrag
	To move (not copy) the contents of another
FrameQueue based object, you can pass the object to this parameter. Doing so
will also copy the object’s max_queue_size attribute.














	
FrameQueue.max_queue_size

	The maximum number of frames that can be enqueued at once. Defaults to 6.






	
FrameQueue.enqueue(frame: RF24NetworkFrame) → bool [https://docs.python.org/3/library/functions.html#bool]

	Add a RF24NetworkFrame to the queue.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the frame was added to the queue, or False [https://docs.python.org/3/library/constants.html#False] if it was not.










	
FrameQueue.dequeue() → RF24NetworkFrame

	
	Returns

	The First Out element and removes it from the queue.










	
FrameQueue.peek() → RF24NetworkFrame

	
	Returns

	The First Out element without removing it from the queue.










	
FrameQueue.__len__() → int [https://docs.python.org/3/library/functions.html#int]

	
	Returns

	The number of the enqueued frames.





For use with Python’s builtin len() [https://docs.python.org/3/library/functions.html#len].







FrameQueueFrag


	
class circuitpython_nrf24l01.network.structs.FrameQueueFrag(queue=None)

	Bases: FrameQueue

A specialized FrameQueue with an additional cache for fragmented frames.


Note

This class will only cache 1 fragmented message at a time. If parts of
the fragmented message are missing (or duplicate fragments are received), then
the fragment is discarded. If a new fragmented message is received (before a
previous fragmented message is completed and reassembled), then the cache
is reused for the new fragmented message to avoid memory leaks.









Logical Address Validation


	
circuitpython_nrf24l01.network.structs.is_address_valid(address) → bool [https://docs.python.org/3/library/functions.html#bool]

	Test if a given address is a valid Logical Address.


	Parameters

	
	address : int [https://docs.python.org/3/library/functions.html#int]
	The Logical Address to validate.







	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the given address can be used as a node_address or to_node
destination. Otherwise, this function returns False [https://docs.python.org/3/library/constants.html#False].


Warning

Please note that this function also allows the value 0o100 to validate
because it is used as the NETWORK_MULTICAST_ADDR for multicasted messages.
Technically, 0o100 is an invalid address.















            

          

      

      

    

  

    
      
          
            
  
Shared Networking API


Order of Inheritance

[image: digraph inheritance {     bgcolor="#323232A1"     fontcolor="#FEF9A9"     fontsize=16     fontname="Roboto"     style="rounded,bold"     color="#FFFFFF00"     newrank=true     node [         style="filled"         fillcolor="#0E6902"         color="#FEFEFE"         fontcolor="#FEFEFE"         fontsize=16         fontname="Roboto"     ]     edge [         color="white"         penwidth=1.5     ]      subgraph cluster_rf24 {         bgcolor="#404040"         tooltip="circuitpython_nrf24l01.rf24 module"         label="  circuitpython_nrf24l01.rf24  ";         RF24 [             URL="../core_api/basic_api.html#basic-rf24-api"             tooltip="RF24 class"         ]     }      subgraph cluster_network_mixins{         bgcolor="#404040"         label="                                circuitpython_nrf24l01.network.mixins  "         tooltip="circuitpython_nrf24l01.network.mixins module"         node [             fillcolor="#014B80"         ]         rank="same"         RadioMixin [tooltip="RadioMixin class"]         NetworkMixin [tooltip="NetworkMixin class"]         RadioMixin -> NetworkMixin     }      subgraph cluster_rf24_network {         bgcolor="#404040"         labelloc="b"         label="  circuitpython_nrf24l01.rf24_network  "         tooltip="circuitpython_nrf24l01.rf24_network module"         RF24NetworkRoutingOnly [             URL="network_api.html#rf24networkroutingonly-class"             tooltip="RF24NetworkRoutingOnly class"         ]         RF24Network [             URL="network_api.html#rf24network-class"             tooltip="RF24Network class"         ]         RF24NetworkRoutingOnly -> RF24Network     }      subgraph cluster_rf24_mesh {         bgcolor="#404040"         labelloc="b"         label="  circuitpython_nrf24l01.rf24_mesh  "         tooltip="circuitpython_nrf24l01.rf24_mesh module"         RF24MeshNoMaster [             URL="mesh_api.html#rf24meshnomaster-class"             tooltip="RF24MeshNoMaster class"         ]         RF24Mesh [             URL="mesh_api.html#rf24mesh-class"             tooltip="RF24Mesh class"         ]         RF24MeshNoMaster -> RF24Mesh     }     RF24 -> RadioMixin     NetworkMixin -> RF24NetworkRoutingOnly     NetworkMixin -> RF24MeshNoMaster }]







The RadioMixin and NetworkMixin classes are not documented directly. Instead, this
documentation follows the OSI (Open Systems Interconnection) model. This is done to mimic how the
TMRh20 C++ libraries and documentation are structured.

Consequentially, all functions and members inherited from the NetworkMixin class are
documented here as part of the RF24Network class. Note that the RF24MeshNoMaster, RF24Mesh,
and RF24NetworkRoutingOnly classes all share the same API inherited from the NetworkMixin
class.



Accessible RF24 API

The purpose of the RadioMixin class is


	to provide a networking layer its own instantiated RF24 object


	to prevent applications from changing the radio’s configuration in a way that breaks the
networking layer’s behavior




The following list of RF24 functions and attributes are exposed in the
RF24Network API and RF24Mesh API.


	channel


	flush_rx()


	flush_tx()


	fifo()


	power


	set_dynamic_payloads()


	get_dynamic_payloads()


	listen


	pa_level


	is_lna_enabled


	data_rate


	crc


	set_auto_retries()


	get_auto_retries()


	last_tx_arc


	address()


	interrupt_config()


	print_pipes()


	print_details()

For the print_details() function, an additional keyword parameter named network_only
can be used to filter out all the core details from the RF24 object. The dump_pipes
parameter still exists and defaults to False [https://docs.python.org/3/library/constants.html#False]. Usage is as follows:

>>> # the following command is the same as `nrf.print_details(0, 1)`
>>> nrf.print_details(dump_pipes=False, network_only=True)
Network frame_buf contents:
    Header is from 0o7777 to 0o0 type 0 id 1 reserved 0. Message contains:
        an empty buffer
Return on system messages__False
Allow network multicasts___True
Multicast relay____________Disabled
Network fragmentation______Enabled
Network max message length_144 bytes
Network TX timeout_________25 milliseconds
Network Routing timeout___75 milliseconds
Network node address_______0o0






Note

The address 0o7777 (seen in output above) is an invalid address used as a sentinel when
the frame is unpopulated with a proper from_node address.









External Systems API

The following attributes are exposed in the RF24Network and RF24Mesh API for
extensibility via external applications or systems.


	
RF24Network.address_prefix = b"\xCC"

	The base case for all pipes’ address’ bytes before mutating with
address_suffix.


See also

The usage of this attribute is more explained in the Topology page








	
RF24Network.address_suffix = b"\xC3\x3C\x33\xCE\x3E\xE3"

	Each byte in this bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] corresponds to the unique byte per pipe and
child node.


See also

The usage of this attribute is more explained in the Topology page








	
RF24Network.frame_buf

	A buffer containing the last frame handled by the network node






	
RF24Network.queue

	The queue (FIFO) of received frames for this node

This attribute will be an instantiated FrameQueue or FrameQueueFrag object depending on the state
of the fragmentation attribute.






	
RF24Network.ret_sys_msg

	Force update() to return on system message types.

This bool [https://docs.python.org/3/library/functions.html#bool] attribute is asserted on mesh network nodes.









            

          

      

      

    

  

    
      
          
            
  
RF24Network API


New in version 2.1.0.




See also

Documentation for:


	Network Topology


	Shared Networking API


	Network Data Structures


	Network Constants







RF24NetworkRoutingOnly class


	
class circuitpython_nrf24l01.rf24_network.RF24NetworkRoutingOnly(spi: busio.SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI], csn_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], ce_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], node_address: int [https://docs.python.org/3/library/functions.html#int], spi_frequency=10000000)

	A minimal Networking implementation for nodes that are meant for strictly
routing data amidst a network of nodes.

This class is a minimal variant of the RF24Network class. The API is almost identical to
RF24Network except that it has no RF24Network.write() or RF24Network.send() functions.
This is meant to be the python equivalent to TMRh20’s DISABLE_USER_PAYLOADS macro in the
C++ RF24Network library.


	Parameters

	
	node_address : int [https://docs.python.org/3/library/functions.html#int]
	The octal int [https://docs.python.org/3/library/functions.html#int] for this node’s Logical Address










See also

For all other parameters’ descriptions, see the
RF24 class’ constructor documentation.









RF24Network class


	
class circuitpython_nrf24l01.rf24_network.RF24Network(spi: busio.SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI], csn_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], ce_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], node_address: int [https://docs.python.org/3/library/functions.html#int], spi_frequency=10000000)

	Bases: RF24NetworkRoutingOnly

The object used to instantiate the nRF24L01 as a network node.


	Parameters

	
	node_address : int [https://docs.python.org/3/library/functions.html#int]
	The octal int [https://docs.python.org/3/library/functions.html#int] for this node’s Logical Address










See also

For all other parameters’ descriptions, see the
RF24 class’ constructor documentation.









Basic API


	
RF24Network.node_address

	get/set the node’s Logical Address for the
RF24Network object.

Setting this attribute will alter


	The Physical Addresses used on the radio’s data pipes


	The parent attribute


	The multicast_level attribute’s default value.





Warning


	If this attribute is set to an invalid network
Logical Address, then nothing is done and the invalid address
is ignored.


	A RF24Mesh object cannot set this attribute because the
Logical Address is assigned by the mesh network’s master node.
Therefore, this attribute is read-only for RF24Mesh objects.


See also

Please review the tip documented in RF24Mesh.node_id for more details.














	
RF24Network.update() → int [https://docs.python.org/3/library/functions.html#int]

	This function is used to keep the network layer current.


Important

It is imperative that this function be called at least once during the application’s main
loop. For applications that perform long operations on each iteration of its main loop,
it is encouraged to call this function more than once when possible.




	Returns

	The latest received message’s message_type. The returned value is not gotten
from frame’s in the queue, but rather it is only gotten from the messages handled
during the function’s operation.










	
RF24Network.available() → bool [https://docs.python.org/3/library/functions.html#bool]

	
	Returns

	A bool [https://docs.python.org/3/library/functions.html#bool] describing if there is a frame waiting in the queue.










	
RF24Network.peek() → RF24NetworkFrame

	Get (from queue) the next available frame.


	Returns

	A RF24NetworkFrame object. However, the data returned is not removed
from the queue. If there is nothing in the queue, this method will return None [https://docs.python.org/3/library/constants.html#None].










	
RF24Network.read() → RF24NetworkFrame

	Get (from queue) the next available frame.

This function differs from peek() because this function also removes the header & message
from the queue.


	Returns

	A RF24NetworkFrame object. If there is nothing in the queue, this method will return None [https://docs.python.org/3/library/constants.html#None].










	
RF24Network.send(header: RF24NetworkHeader, message: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Deliver a message according to the header information.


	Parameters

	
	header : RF24NetworkHeader
	The outgoing frame’s header. It is important to
have the header’s to_node attribute set to the target network node’s
Logical Address.



	message : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The outgoing frame’s message.


Note

Be mindful of the message’s size as this cannot exceed MAX_FRAG_SIZE
(24 bytes) if fragmentation is disabled. If fragmentation is enabled (it
is by default), then the message’s size must be less than max_message_length











	Returns

	A bool [https://docs.python.org/3/library/functions.html#bool] describing if the message has been transmitted. This does not necessarily
describe if the message has been received at its target destination.


Tip

To ensure a message has been delivered to its target destination, set the
frame’s header’s message_type to an int [https://docs.python.org/3/library/functions.html#int] in range [65, 127]. This will invoke
a NETWORK_ACK response message.













Advanced API


	
RF24Network.multicast(message: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], message_type: str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], level: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bool [https://docs.python.org/3/library/functions.html#bool]

	Broadcast a message to all nodes on a certain network level.


	Parameters

	
	message : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The outgoing frame’s message.



	message_type : str [https://docs.python.org/3/library/stdtypes.html#str],int [https://docs.python.org/3/library/functions.html#int]
	The outgoing frame’s message_type.



	level : int [https://docs.python.org/3/library/functions.html#int]
	The network level of nodes to broadcast to.
If this optional parameter is not specified, then the node’s multicast_level is used.










See also

multicast_level, multicast_relay, and allow_multicast




	Returns

	A bool [https://docs.python.org/3/library/functions.html#bool] describing if the message has been transmitted. This does not necessarily
describe if the message has been received at its target destination.


Note

For multicasted messages, the radio’s auto_ack feature is not used.

This function will always return True [https://docs.python.org/3/library/constants.html#True] if a message is directed to a node’s pipe
that does not have auto_ack enabled (which will likely be pipe 0 in most network
contexts).




Tip

To ensure a message has been delivered to its target destination, set the
header’s message_type to an int [https://docs.python.org/3/library/functions.html#int] in range [65, 127]. This will invoke a
NETWORK_ACK response message.












	
RF24Network.write(frame: RF24NetworkFrame, traffic_direct: int [https://docs.python.org/3/library/functions.html#int] = 56) → bool [https://docs.python.org/3/library/functions.html#bool]

	Deliver a network frame.


Hint

This function can be used to transmit entire frames accumulated in a
user-defined FrameQueue object.

from circuitpython_nrf24l01.network.structs import FrameQueue, RF24NetworkFrame, RF24NetworkHeader

my_q = FrameQueue()
for i in range(my_q.max_queue_size):
    my_q.enqueue(
        RF24NetworkFrame(
            RF24NetworkHeader(0, "1"), bytes(range(i + 5))
        )
    )

# when it's time to send the queue
while len(my_q):
    # let `nrf` be the instantiated RF24Network object
    nrf.write(my_q.dequeue())








	Parameters

	
	frame : RF24NetworkFrame
	The complete frame to send. It is important to
have the header’s to_node attribute set to the target network node’s address.



	traffic_direct : int [https://docs.python.org/3/library/functions.html#int]
	The specified direction of the frame. By default, this
will invoke the automatic routing mechanisms. However, this parameter
can be set to a network node’s Logical Address for direct
transmission to the specified node - meaning the transmission’s automatic routing
will begin at the network node that is specified with this parameter instead of being
automatically routed from the actual origin of the transmission.







	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] if the frame has been transmitted. This does not necessarily
describe if the message has been received at its target destination.


	False [https://docs.python.org/3/library/constants.html#False] if the frame  has failed to transmit.





Note

This function will always return True [https://docs.python.org/3/library/constants.html#True] if the traffic_direct parameter is set to
anything other than its default value. Using the traffic_direct parameter assumes
there is a reliable/open connection to the node_address passed to traffic_direct.




Tip

To ensure a message has been delivered to its target destination, set the
frame’s header’s message_type to an int [https://docs.python.org/3/library/functions.html#int] in range [65, 127]. This will invoke
a NETWORK_ACK response message.












	
RF24Network.parent

	Get address for the parent node

Returns 0 if called on the network’s master node.







Configuration API


	
RF24Network.max_message_length

	The maximum length of a frame’s message.

By default this is set to 144. If a network node is driven by the TMRh20
RF24Network library on a ATTiny-based board, set this to 72 (as per TMRh20’s
RF24Network library default behavior).

Configuring the fragmentation attribute will automatically change the value that
max_message_length attribute is set to.






	
RF24Network.fragmentation

	Enable/disable (True [https://docs.python.org/3/library/constants.html#True]/False [https://docs.python.org/3/library/constants.html#False]) the message fragmentation feature.

Changing this attribute’s state will also appropriately changes the type of FrameQueue
(or FrameQueueFrag) object used for storing incoming network packets. Disabling
fragmentation can save some memory (not as much as TMRh20’s RF24Network library’s
DISABLE_FRAGMENTATION macro), but max_message_length will be limited to 24 bytes
(MAX_FRAG_SIZE) maximum. Enabling this attribute will set max_message_length attribute
to 144 bytes.






	
RF24Network.multicast_relay

	Enabling this attribute will automatically forward received multicasted
frames to the next highest network level.

Forwarded frames will also be enqueued on the forwarding node as a received frame.






	
RF24Network.multicast_level

	Override the default multicasting network level which is set by the
node_address attribute.

Setting this attribute will also change the physical address
on the radio’s RX data pipe 0.


See also

The network levels are explained in more detail on
the topology document.








	
RF24Network.allow_multicast

	enable/disable (True [https://docs.python.org/3/library/constants.html#True]/False [https://docs.python.org/3/library/constants.html#False]) multicasting

This attribute affects


	the Physical Address translation (for data pipe 0) when setting the
node_address


	all incoming multicasted frames (including multicast_relay behavior).









	
RF24Network.tx_timeout

	The timeout (in milliseconds) to wait for successful transmission.

Defaults to 25.






	
RF24Network.route_timeout

	The timeout (in milliseconds) to wait for transmission’s NETWORK_ACK.

Defaults to 75.









            

          

      

      

    

  

    
      
          
            
  
RF24Mesh API


New in version 2.1.0.




See also

Documentation for:


	Shared Networking API (API common to RF24Mesh and RF24Network)


	RF24Network API (RF24Mesh inherits from the same mixin class
that RF24Network inherits from)







RF24MeshNoMaster class


	
class circuitpython_nrf24l01.rf24_mesh.RF24MeshNoMaster(spi: busio.SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI], csn_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], ce_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], node_id: int [https://docs.python.org/3/library/functions.html#int], spi_frequency: int [https://docs.python.org/3/library/functions.html#int] = 10000000)

	A descendant of the same mixin class that RF24Network inherits from. This
class adds easy Mesh networking capability (non-master nodes only).

This class exists to save memory for nodes that don’t behave like mesh network master nodes.
It is the python equivalent to TMRh20’s MESH_NO_MASTER macro in the C++ RF24Mesh library.
All the API is the same as RF24Mesh class.


	Parameters

	
	node_id : int [https://docs.python.org/3/library/functions.html#int]
	The unique identifying node_id
number for the instantiated mesh node.










See also

For all parameters’ descriptions, see the
RF24 class’ constructor documentation.









RF24Mesh class


	
class circuitpython_nrf24l01.rf24_mesh.RF24Mesh(spi: busio.SPI [https://docs.circuitpython.org/en/latest/shared-bindings/busio/index.html#busio.SPI], csn_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], ce_pin: digitalio.DigitalInOut [https://docs.circuitpython.org/en/latest/shared-bindings/digitalio/index.html#digitalio.DigitalInOut], node_id: int [https://docs.python.org/3/library/functions.html#int], spi_frequency: int [https://docs.python.org/3/library/functions.html#int] = 10000000)

	Bases: RF24MeshNoMaster

A descendant of the base class RF24MeshNoMaster that adds algorithms needed
for Mesh network master nodes.


	Parameters

	
	node_id : int [https://docs.python.org/3/library/functions.html#int]
	The unique identifying node_id number for the instantiated mesh node.










See also

For all parameters’ descriptions, see the
RF24 class’ constructor documentation.









Basic API


	
RF24Mesh.send(to_node: int [https://docs.python.org/3/library/functions.html#int], message_type: int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], message: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Send a message to a mesh node_id.

This function will use lookup_address() to fetch the necessary
Logical Address to set the frame’s header’s to_node
attribute.


Hint

If you already know the destination node’s Logical Address,
then you can use write()
for quicker operation.




	Parameters

	
	to_node : int [https://docs.python.org/3/library/functions.html#int]
	The unique mesh network node_id of the frame’s destination.
Defaults to 0 (which is reserved for the master node).



	message_type : str [https://docs.python.org/3/library/stdtypes.html#str],int [https://docs.python.org/3/library/functions.html#int]
	The int [https://docs.python.org/3/library/functions.html#int] that describes the frame header’s message_type.



	message : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The frame’s message to be transmitted.


Note

Be mindful of the message’s size as this cannot exceed MAX_FRAG_SIZE (24 bytes) if
fragmentation is disabled. If fragmentation is enabled (it is by default), then
the message’s size must be less than
max_message_length.











	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] if the frame has been transmitted. This does not necessarily
describe if the message has been received at its target destination.


	False [https://docs.python.org/3/library/constants.html#False] if the frame  has not been transmitted.





Tip

To ensure a message has been delivered to its target destination, set the
message_type parameter to an int [https://docs.python.org/3/library/functions.html#int] in range [65, 127]. This will invoke
a NETWORK_ACK response message.












	
RF24Mesh.node_id

	The unique ID number (1 byte long) of the mesh network node.

This is not to be confused with the network node’s node_address. This attribute is meant to
distinguish different mesh network nodes that may, at separate instances, use the same
node_address. It is up to the developer to make sure each mesh network node uses a different
ID number.


Warning

Changing this attributes value after instantiation will automatically call
release_address() which disconnects the node from the mesh network. Notice the
node_address is set to NETWORK_DEFAULT_ADDR  when consciously not connected to the
mesh network.




Tip

When a mesh node becomes disconnected from the mesh network, use renew_address()
to fetch (from the master node) an assigned logical address to be used as the mesh node’s
node_address.








	
RF24Mesh.renew_address(timeout: int [https://docs.python.org/3/library/functions.html#int] = 7.5)

	Connect to the mesh network and request a new node_address.


	Parameters

	
	timeout : float [https://docs.python.org/3/library/functions.html#float],int [https://docs.python.org/3/library/functions.html#int]
	The amount of time (in seconds) to continue trying to connect
and get an assigned Logical Address. Defaults to 7.5 seconds.










Note

This function automatically sets the node_address accordingly.




	Returns

	
	If successful: The node_address that was set to the newly assigned
Logical Address.


	If unsuccessful: None [https://docs.python.org/3/library/constants.html#None], and the node_address attribute will be set to
NETWORK_DEFAULT_ADDR (0o4444 in octal or 2340 in decimal).














Advanced API


	
RF24Mesh.lookup_node_id(address: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → int [https://docs.python.org/3/library/functions.html#int]

	Convert a node’s Logical Address into its
corresponding unique ID number.


	Parameters

	
	address : int [https://docs.python.org/3/library/functions.html#int]
	The Logical Address for which
a unique node_id is assigned from network master node.







	Returns

	
	The unique node_id assigned to the specified address.


	Error codes include


	-2 means the specified address has not been assigned a
unique node_id from the master node or the requesting
network node’s node_address is equal to NETWORK_DEFAULT_ADDR.


	-1 means the address lookup operation failed due to no network connection
or the master node has not assigned a unique node_id
for the specified address.

















	
RF24Mesh.lookup_address(node_id: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → int [https://docs.python.org/3/library/functions.html#int]

	Convert a node’s unique ID number into its corresponding
Logical Address.


	Parameters

	
	node_id : int [https://docs.python.org/3/library/functions.html#int]
	The unique node_id for which a
Logical Address is assigned from network master node.







	Returns

	
	The Logical Address assigned to the specified node_id.


	Error codes include


	-2 means the specified node_id has not been assigned a
Logical Address from the master node or the requesting
network node’s node_address is equal to NETWORK_DEFAULT_ADDR.


	-1 means the address lookup operation failed due to no network connection
or the master node has not assigned a Logical Address
for the specified node_id.

















	
RF24Mesh.write(to_node: int [https://docs.python.org/3/library/functions.html#int], message_type: int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], message: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Send a message to a network node_address.


	Parameters

	
	to_node : int [https://docs.python.org/3/library/functions.html#int]
	The network node’s Logical Address.
of the frame’s destination. This must be the destination’s network node_address which is
not be confused with a mesh node’s node_id.



	message_type : str [https://docs.python.org/3/library/stdtypes.html#str],int [https://docs.python.org/3/library/functions.html#int]
	The int [https://docs.python.org/3/library/functions.html#int] that describes the frame header’s message_type.


Note

Be mindful of the message’s size as this cannot exceed
MAX_FRAG_SIZE (24 bytes) if fragmentation is disabled. If fragmentation is
enabled (it is by default), then the message’s size must be less than
max_message_length.







	message : bytes [https://docs.python.org/3/library/stdtypes.html#bytes],bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
	The frame’s message to be transmitted.







	Returns

	
	True [https://docs.python.org/3/library/constants.html#True] if the frame has been transmitted. This does not necessarily
describe if the message has been received at its target destination.


	False [https://docs.python.org/3/library/constants.html#False] if the frame  has not been transmitted.





Tip

To ensure a message has been delivered to its target destination, set the
message_type parameter to an int [https://docs.python.org/3/library/functions.html#int] in range [65, 127]. This will invoke
a NETWORK_ACK response message.












	
RF24Mesh.check_connection() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check for network connectivity (not for use on master node).






	
RF24Mesh.release_address() → bool [https://docs.python.org/3/library/functions.html#bool]

	Forces an address lease to expire from the master.


Hint

This should be called from a mesh network node that is disconnecting from the network.
This is also recommended for mesh network nodes that are entering a powered down (or
sleep) mode.








	
RF24Mesh.allow_children

	Allow/disallow child node to connect to this network node.






	
RF24Mesh.block_less_callback

	This variable can be assigned a function to perform during long operations.


Note

Requesting a new address (via renew_address()) can take a while since it sequentially
attempts to get re-assigned to the first available Logical Address
on the highest possible network level.



The assigned function will be called during renew_address(), lookup_address() and
lookup_node_id().






	
RF24Mesh.dhcp_dict

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] that enables master nodes to act as a DNS.

This dict [https://docs.python.org/3/library/stdtypes.html#dict] stores the assigned Logical Addresses to the connected
mesh node’s node_id.


	The keys in this dict [https://docs.python.org/3/library/stdtypes.html#dict] are the unique node_id of a mesh network node.


	The values in this dict [https://docs.python.org/3/library/stdtypes.html#dict] (corresponding to each key) are the node_address assigned to the node_id.









	
RF24Mesh.save_dhcp(filename: str [https://docs.python.org/3/library/stdtypes.html#str] = 'dhcplist.json', as_bin: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Save the dhcp_dict to a JSON file (meant for master nodes only).


Warning

This function will likely throw a OSError [https://docs.python.org/3/library/exceptions.html#OSError] on boards running CircuitPython firmware
because the file system is by default read-only.



Calling this function on a Linux device (like the Raspberry Pi) will save the
dhcp_dict to a JSON file located in the program’s working directory.


	Parameters

	
	filename : str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of the json file to be used. This value should include a file extension
(like “.json” or “.txt”).



	as_bin : bool [https://docs.python.org/3/library/functions.html#bool]
	Set this parameter to True [https://docs.python.org/3/library/constants.html#True] to save the DHCP list to a binary text file.
Defaults to False [https://docs.python.org/3/library/constants.html#False] which saves the DHCP list as JSON syntax.










Changed in version 2.1.1: Added as_bin parameter to make use of binary text files.








	
RF24Mesh.load_dhcp(filename: str [https://docs.python.org/3/library/stdtypes.html#str] = 'dhcplist.json', as_bin: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Load the dhcp_dict from a JSON file (meant for master nodes only).


	Parameters

	
	filename : str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of the json file to be used. This value should include a file extension
(like “.json” or “.txt”).



	as_bin : bool [https://docs.python.org/3/library/functions.html#bool]
	Set this parameter to True [https://docs.python.org/3/library/constants.html#True] to load the DHCP list from a binary text file.
Defaults to False [https://docs.python.org/3/library/constants.html#False] which loads the DHCP list from JSON syntax.










Warning

This function will raise an OSError [https://docs.python.org/3/library/exceptions.html#OSError] exception if no file exists.




Changed in version 2.1.1: Added as_bin parameter to make use of binary text files.








	
RF24Mesh.set_address(node_id: int [https://docs.python.org/3/library/functions.html#int], node_address: int [https://docs.python.org/3/library/functions.html#int], search_by_address: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Set/change a node_id and node_address pair in the dhcp_dict.

This function is only meant to be called on the mesh network’s master node.
Use this function to manually assign a node_id to a RF24Network.node_address.


	Parameters

	
	node_id : int [https://docs.python.org/3/library/functions.html#int]
	A unique identifying number ranging [1, 255].



	node_address : int [https://docs.python.org/3/library/functions.html#int]
	A Logical Address



	search_by_address : bool [https://docs.python.org/3/library/functions.html#bool]
	A flag to traverse the dhcp_dict by value instead of by key.

















            

          

      

      

    

  

    
      
          
            
  
Network Constants


New in version 2.1.0.




Sending Behavior Types


	
circuitpython_nrf24l01.network.constants.AUTO_ROUTING = 56

	Send a message with automatic network routing.






	
circuitpython_nrf24l01.network.constants.TX_NORMAL = 0

	Send a routed message.

This is used for most outgoing message types.






	
circuitpython_nrf24l01.network.constants.TX_ROUTED = 1

	Send a routed message.

This is internally used for NETWORK_ACK message routing.






	
circuitpython_nrf24l01.network.constants.TX_PHYSICAL = 2

	Send a message directly to network node.

These usually take 1 transmission, so they don’t get a network ACK because the
radio’s auto_ack will serve the ACK.






	
circuitpython_nrf24l01.network.constants.TX_LOGICAL = 3

	Similar to TX_NORMAL.

This allows the user to define the routed transmission’s first path (these can still get a
NETWORK_ACK).






	
circuitpython_nrf24l01.network.constants.TX_MULTICAST = 4

	Broadcast a message to a network level of nodes.


See also


	Network Levels


	multicast_relay


	multicast()


	multicast_level












Reserved Network Message Types


	
circuitpython_nrf24l01.network.constants.MESH_ADDR_RESPONSE = 128

	Primarily for RF24Mesh

This message_type is used to in the final step of renew_address() route a messages
containing a newly allocated node_address. The header’s reserved attribute for this
message_type will store the requesting mesh node’s node_id related to the newly assigned
node_address. Any non-requesting network node receiving this message_type will forward it
to the requesting node using normal network routing.






	
circuitpython_nrf24l01.network.constants.NETWORK_PING = 130

	Used for network pings

This message_type is automatically discarded because the radio’s auto_ack feature will serve
up the response.






	
circuitpython_nrf24l01.network.constants.NETWORK_EXT_DATA = 131

	Unsupported at this time as this operation requires a new implementation.

Used for bridging different network protocols between an RF24Network and LAN/WLAN networks.






	
circuitpython_nrf24l01.network.constants.NETWORK_ACK = 193

	Used for network-wide acknowledgements.

The message type used when forwarding acknowledgements directed to the
instigating message’s origin. This is not be confused with the radio’s auto_ack
attribute. In fact, all messages (except multicasted ones) take advantage of the
radio’s auto_ack feature when transmitting between directly related nodes (ie
between a transmitting node’s parent or child node).


Important

NETWORK_ACK messages are only sent by the last node in the route to a
destination. For example: Node 0o0 sends an instigating message to node
0o11. The NETWORK_ACK message is sent from node 0o1 when it confirms node
0o11 received the instigating message.




Hint

This feature is not flawless because it assumes a reliable connection
between all necessary network nodes.








	
circuitpython_nrf24l01.network.constants.NETWORK_POLL = 194

	Primarily for RF24Mesh

This message_type is used with NETWORK_MULTICAST_ADDR
to find active/available nodes. Any node receiving a NETWORK_POLL sent to a
NETWORK_MULTICAST_ADDR will respond directly to the sender with a blank message,
indicating the address of the available node via the header’s from_node attribute.






	
circuitpython_nrf24l01.network.constants.MESH_ADDR_REQUEST = 195

	Primarily for RF24Mesh

This message_type is used for requesting Logical Address data from
the mesh network’s master node. Any non-master node receiving this message_type will manually
forward it to the master node using normal network routing.






	
circuitpython_nrf24l01.network.constants.MESH_ADDR_LOOKUP = 196

	The message_type to request a mesh node’s network address from its unique ID.






	
circuitpython_nrf24l01.network.constants.MESH_ADDR_RELEASE = 197

	The message_type when manually expiring a leased address.






	
circuitpython_nrf24l01.network.constants.MESH_ID_LOOKUP = 198

	The message_type to request a mesh node’s unique ID number from its node address.







Generic Network constants


	
circuitpython_nrf24l01.network.constants.MAX_USR_DEF_MSG_TYPE = 127

	A convenient sentinel value.

Any message type above 127 (but cannot exceed 255) are reserved for internal
network usage.






	
circuitpython_nrf24l01.network.constants.NETWORK_DEFAULT_ADDR = 2340

	Primarily used by RF24Mesh.

Any mesh node that disconnects or is trying to connect to a mesh network will use this value
until it is assigned a Logical Address from the master node.






	
circuitpython_nrf24l01.network.constants.NETWORK_MULTICAST_ADDR = 64

	A reserved address for multicast messages.






	
circuitpython_nrf24l01.network.constants.MAX_FRAG_SIZE = 24

	Maximum message size for a single frame’s message.

This does not including header’s byte length (which is always 8 bytes).


Warning

Do not increase this value in the source code. Adjust
max_message_length
instead.









Message Fragment Types

Message fragments will use these values in the
message_type attribute.
The sequential fragment id number will be stored in the
reserved attribute,
but the actual message type is transmitted in the
reserved attribute
of the last fragment.


	
circuitpython_nrf24l01.network.constants.MSG_FRAG_FIRST = 148

	Used to indicate the first frame of a fragmented message.






	
circuitpython_nrf24l01.network.constants.MSG_FRAG_MORE = 149

	Used to indicate a middle frame of a fragmented message.






	
circuitpython_nrf24l01.network.constants.MSG_FRAG_LAST = 150

	Used to indicate the last frame of a fragmented message.







RF24Mesh specific constants


	
circuitpython_nrf24l01.network.constants.MESH_LOOKUP_TIMEOUT = 135

	Used for lookup_address() & lookup_node_id()

The time (in milliseconds) that a non-master mesh node will wait for a response when
requesting a node’s relative Logical Address or unique ID number
from the master node.






	
circuitpython_nrf24l01.network.constants.MESH_MAX_POLL = 4

	The max number of contacts made during renew_address().

A mesh node polls the first 4 network levels (0-3) looking for a response.
This value is used to used when aggregating a list of responding nodes (per level).






	
circuitpython_nrf24l01.network.constants.MESH_MAX_CHILDREN = 4

	The max number of children for 1 mesh node.

This information is only used by mesh network master nodes when allocating a possible
Logical Address for the requesting node.






	
circuitpython_nrf24l01.network.constants.MESH_WRITE_TIMEOUT = 115

	The time (in milliseconds) used to send messages.

When RF24Mesh.send() is called, This value is only used when getting the node_address
assigned to a node_id from the mesh network’s master node.









            

          

      

      

    

  

    
      
          
            
  
Troubleshooting info


Common Problems


Attribute dependency

The nRF24L01 has 3 key features.


	auto_ack feature provides transmission verification by using the RX nRF24L01 to
automatically and immediately send an acknowledgment (ACK) packet in response to
received payloads. auto_ack does not require
dynamic_payloads to be enabled.


Note

With the auto_ack feature enabled, you get:


	cyclic redundancy checking (crc) automatically enabled


	to change amount of automatic re-transmit attempts and the delay time between
them. See the arc and ard attributes.








	dynamic_payloads feature allows either TX/RX nRF24L01 to be able to send/receive
payloads with their size written into the payloads’ packet. With this disabled, both
RX/TX nRF24L01 must use matching payload_length attributes.
dynamic_payloads
does not require auto_ack to be enabled.


	ack feature allows the MCU to append a payload to the ACK packet, thus instant
bi-directional communication. A transmitting ACK payload must be loaded into the
nRF24L01’s TX FIFO buffer (done using load_ack()) BEFORE receiving the payload that
is to be acknowledged. Once transmitted, the payload is released from the TX FIFO
buffer.


Important

This ack feature requires the auto_ack and
dynamic_payloads
features enabled.









FIFO Capacity

Remember that the nRF24L01’s FIFO (First-In, First-Out) buffers have 3 levels. This means that
there can be up to 3 payloads waiting to be read (RX) and up to 3 payloads waiting to be
transmit (TX). Notice there are separate FIFO buffers sending & receiving (respectively mentioned
in this documentation as TX FIFO & RX FIFO).

Each of the 3 levels in the FIFO buffers can only store a maximum of 32 bytes. If you receive 2 payloads with a length of 4 bytes each, then there is only 1 level of the RX FIFO buffers left unoccupied.



Pipes vs Addresses vs Channels


Hint

Please review the Multiceiver example as a
demonstration of proper addressing using all pipes (on the same channel).




Pipes

You should think of the data pipes as a “parking spot” for your payload. There are only six
data pipes on the nRF24L01, thus it can simultaneously “listen” to a maximum of 6 other
nRF24L01 radios. However, it can only “talk” to 1 other nRF24L01 at a time.



Addresses

The specified address is not the address of an nRF24L01 radio, rather it is more like a
path that connects the endpoints. When assigning addresses to a data pipe, you can use any
5 byte long address you can think of (as long as the first byte of the bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] is unique
among simultaneously broadcasting addresses), so you’re not limited to communicating with only
the same 6 nRF24L01 radios.



Channels

Finally, the radio’s channel is not be confused with the radio’s pipes. Channel selection
is a way of specifying a certain radio frequency (frequency = [2400 + channel] MHz).
Channel defaults to 76 (like the arduino library), but options range from 0 to 125 –
that’s 2.4 GHz to 2.525 GHz. The channel can be tweaked to find a less occupied frequency
amongst Bluetooth, WiFi, or other ambient signals that use the same spectrum of
frequencies.




Settings that must Match

For successful transmissions, most of the endpoint transceivers’ settings/features must
match. These settings/features include:


	The RX pipe’s address on the receiving nRF24L01 (passed to open_rx_pipe()) MUST match
the TX pipe’s address on the transmitting nRF24L01 (passed to open_tx_pipe())


	address_length


	channel


	data_rate


	dynamic_payloads


	payload_length only when
dynamic_payloads is disabled


	auto_ack


	custom ack payloads


	crc





Settings that do not need to Match

In fact the only attributes that aren’t required to match on both endpoint transceivers
would be


	the identifying data pipe number passed to open_rx_pipe() or load_ack() (as long as the
corresponding addresses match)


	pa_level


	arc


	ard




The ask_no_ack feature can be used despite the
settings/features configuration (see send() &
write() function parameters for more details).





About the lite version


New in version 1.2.0.



This library contains a “lite” version of rf24.py titled rf24_lite.py. It has been
developed to save space on microcontrollers with limited amount of RAM and/or storage (like
boards using the ATSAMD21). The following functionality has been removed from the lite
version:


	The FakeBLE, RF24Network, and RF24Mesh classes are not compatible with the rf24_lite.py module.


	is_plus_variant is removed, meaning the
lite version is not compatibility with the older non-plus variants of the nRF24L01.


	address() removed.


	print_details() removed. However you can use the following function to dump all available
registers’ values (for advanced users):

# let `nrf` be the instantiated RF24 object
def dump_registers(end=0x1e):
    for i in range(end):
        if i in (0xA, 0xB, 0x10):
            print(hex(i), "=", nrf._reg_read_bytes(i))
        elif i not in (0x18, 0x19, 0x1a, 0x1b):
            print(hex(i), "=", hex(nrf._reg_read(i)))







	dynamic_payloads applies to all
pipes, not individual pipes. This attribute will return
a bool [https://docs.python.org/3/library/functions.html#bool] instead of an int [https://docs.python.org/3/library/functions.html#int].
set_dynamic_payloads() and
get_dynamic_payloads() have
been removed.


	payload_length applies to all pipes, not individual pipes. set_payload_length() and
get_payload_length() have been removed.


	load_ack() is available, but it will not throw exceptions for malformed buf or
invalid pipe_number parameters. Rather any call to load_ack() with invalid
parameters will have no affect on the TX FIFO.


	crc removed. 2-bytes encoding scheme (CRC16) is always enabled.


	auto_ack removed. This is always enabled for all pipes. Pass ask_no_ack parameter
as True [https://docs.python.org/3/library/constants.html#True] to send() or write() to disable
automatic acknowledgement for TX operations.


	is_lna_enabled removed as it only affects non-plus variants of the nRF24L01.


	pa_level is available, but it will not accept a list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple].


	start_carrier_wave(), & stop_carrier_wave() removed. These only perform a
test of the nRF24L01’s hardware. rpd is still available.


	All comments and docstrings removed, meaning help() will not provide any specific
information. Exception prompts have also been reduced and adjusted accordingly.


	Cannot switch between different radio configurations using context manager (the The with statement [https://docs.python.org/3/reference/compound_stmts.html#with]
blocks). It is advised that only one RF24 object be instantiated when RAM is limited
(less than or equal to 32KB).


	last_tx_arc attribute removed because it is only meant for troubleshooting.


	allow_ask_no_ack attribute removed because it is only provided for the Si24R1
chinese clone.


	set_auto_retries() & get_auto_retries() removed. Use ard & arc attributes instead.






Testing nRF24L01+PA+LNA module

The following are semi-successful test results using a nRF24L01+PA+LNA module:


The Setup

I wrapped the PA/LNA module with electrical tape and then foil around that (for shielding)
while being very careful to not let the foil touch any current carrying parts (like the GPIO pins and the soldier joints for the antenna mount). Then I wired up a PA/LNA module with a 3V
regulator (L4931 with a 2.2 µF capacitor between Vout & GND) using my ItsyBitsy M4
5V (USB) pin going directly to the L4931 Vin pin. The following are experiences from
running simple, ack, & stream examples with a reliable nRF24L01+ (no PA/LNA) on the other end (driven by a Raspberry Pi 2):



Results (ordered by pa_level settings)


	0 dBm: master() worked the first time (during simple example) then continuously failed
(during all examples). slave() worked on simple & stream examples, but the opposing
master() node reporting that ACK packets (without payloads) were not received from
the PA/LNA module; slave() failed to send ACK packet payloads during the ack example.


	-6 dBm: master() worked consistently on simple, ack, & stream example. slave() worked
reliably on simple & stream examples, but failed to transmit any ACK packet payloads in
the ack example.


	-12 dBm: master() worked consistently on simple, ack, & stream example. slave()
worked reliably on simple & stream examples, but failed to transmit some ACK packet
payloads in the ack example.


	-18 dBm: master() worked consistently on simple, ack, & stream example. slave()
worked reliably on simple, ack, & stream examples, meaning all ACK packet payloads were
successfully transmit in the ack example.




I should note that without shielding the PA/LNA module and using the L4931 3V regulator,
no TX transmissions got sent (including ACK packets for the auto_ack feature).



Conclusion

The PA/LNA modules seem to require quite a bit more power to transmit. The L4931 regulator
that I used in the tests boasts a 300 mA current limit and a typical current of 250 mA.
While the ItsyBitsy M4 boasts a 500 mA max, it would seem that much of that is consumed
internally. Since playing with the pa_level is a
current saving hack (as noted in the datasheet), I can only imagine that a higher power
3V regulator may enable sending transmissions (including ACK packets – with or without
ACK payloads attached) from PA/LNA modules using higher
pa_level settings. More testing is called for,
but I don’t have an oscilloscope to measure the peak current draws.






            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 


_


  	
      	__len__() (circuitpython_nrf24l01.fake_ble.ServiceData method)

      
        	(circuitpython_nrf24l01.network.structs.FrameQueue method)


      


  

  	
      	__repr__() (circuitpython_nrf24l01.fake_ble.ServiceData method)


  





A


  	
      	ack (circuitpython_nrf24l01.rf24.RF24 attribute)


      	address() (circuitpython_nrf24l01.rf24.RF24 method)


      	address_length (circuitpython_nrf24l01.rf24.RF24 attribute)


      	address_prefix (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	address_repr() (in module circuitpython_nrf24l01.rf24)


      	address_suffix (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	advertise() (circuitpython_nrf24l01.fake_ble.FakeBLE method)


      	allow_ask_no_ack (circuitpython_nrf24l01.rf24.RF24 attribute)


      	allow_children (circuitpython_nrf24l01.rf24_mesh.RF24Mesh attribute)


  

  	
      	allow_multicast (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	any() (circuitpython_nrf24l01.rf24.RF24 method)


      	arc (circuitpython_nrf24l01.rf24.RF24 attribute)


      	ard (circuitpython_nrf24l01.rf24.RF24 attribute)


      	auto_ack (circuitpython_nrf24l01.rf24.RF24 attribute)


      	AUTO_ROUTING (in module circuitpython_nrf24l01.network.constants)


      	available() (circuitpython_nrf24l01.fake_ble.FakeBLE method)

      
        	(circuitpython_nrf24l01.rf24.RF24 method)


        	(circuitpython_nrf24l01.rf24_network.RF24Network method)


      


  





B


  	
      	BATTERY_UUID (in module circuitpython_nrf24l01.fake_ble)


      	BatteryServiceData (class in circuitpython_nrf24l01.fake_ble)


  

  	
      	BLE_FREQ (in module circuitpython_nrf24l01.fake_ble)


      	block_less_callback (circuitpython_nrf24l01.rf24_mesh.RF24Mesh attribute)


      	buffer (circuitpython_nrf24l01.fake_ble.ServiceData property)


  





C


  	
      	channel (circuitpython_nrf24l01.fake_ble.FakeBLE attribute)

      
        	(circuitpython_nrf24l01.rf24.RF24 attribute)


      


      	check_connection() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	chunk() (in module circuitpython_nrf24l01.fake_ble)


  

  	
      	clear_status_flags() (circuitpython_nrf24l01.rf24.RF24 method)


      	close_rx_pipe() (circuitpython_nrf24l01.rf24.RF24 method)


      	crc (circuitpython_nrf24l01.rf24.RF24 attribute)


      	crc24_ble() (in module circuitpython_nrf24l01.fake_ble)


  





D


  	
      	data (circuitpython_nrf24l01.fake_ble.BatteryServiceData property)

      
        	(circuitpython_nrf24l01.fake_ble.QueueElement attribute)


        	(circuitpython_nrf24l01.fake_ble.ServiceData property)


        	(circuitpython_nrf24l01.fake_ble.TemperatureServiceData property)


        	(circuitpython_nrf24l01.fake_ble.UrlServiceData property)


      


  

  	
      	data_rate (circuitpython_nrf24l01.rf24.RF24 attribute)


      	dequeue() (circuitpython_nrf24l01.network.structs.FrameQueue method)


      	dhcp_dict (circuitpython_nrf24l01.rf24_mesh.RF24Mesh attribute)


      	dynamic_payloads (circuitpython_nrf24l01.rf24.RF24 attribute)


  





E


  	
      	EDDYSTONE_UUID (in module circuitpython_nrf24l01.fake_ble)


  

  	
      	enqueue() (circuitpython_nrf24l01.network.structs.FrameQueue method)


  





F


  	
      	FakeBLE (class in circuitpython_nrf24l01.fake_ble)


      	fifo() (circuitpython_nrf24l01.rf24.RF24 method)


      	flush_rx() (circuitpython_nrf24l01.rf24.RF24 method)


      	flush_tx() (circuitpython_nrf24l01.rf24.RF24 method)


      	fragmentation (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


  

  	
      	frame_buf (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	frame_id (circuitpython_nrf24l01.network.structs.RF24NetworkHeader attribute)


      	FrameQueue (class in circuitpython_nrf24l01.network.structs)


      	FrameQueueFrag (class in circuitpython_nrf24l01.network.structs)


      	from_node (circuitpython_nrf24l01.network.structs.RF24NetworkHeader attribute)


  





G


  	
      	get_auto_ack() (circuitpython_nrf24l01.rf24.RF24 method)


      	get_auto_retries() (circuitpython_nrf24l01.rf24.RF24 method)


  

  	
      	get_dynamic_payloads() (circuitpython_nrf24l01.rf24.RF24 method)


      	get_payload_length() (circuitpython_nrf24l01.rf24.RF24 method)


  





H


  	
      	header (circuitpython_nrf24l01.network.structs.RF24NetworkFrame attribute)


  

  	
      	hop_channel() (circuitpython_nrf24l01.fake_ble.FakeBLE method)


  





I


  	
      	interrupt_config() (circuitpython_nrf24l01.fake_ble.FakeBLE method)

      
        	(circuitpython_nrf24l01.rf24.RF24 method)


      


      	irq_df (circuitpython_nrf24l01.rf24.RF24 attribute)


      	irq_dr (circuitpython_nrf24l01.rf24.RF24 attribute)


  

  	
      	irq_ds (circuitpython_nrf24l01.rf24.RF24 attribute)


      	is_ack_type() (circuitpython_nrf24l01.network.structs.RF24NetworkFrame method)


      	is_address_valid() (in module circuitpython_nrf24l01.network.structs)


      	is_lna_enabled (circuitpython_nrf24l01.rf24.RF24 attribute)


      	is_plus_variant (circuitpython_nrf24l01.rf24.RF24 attribute)


  





L


  	
      	last_tx_arc (circuitpython_nrf24l01.rf24.RF24 attribute)


      	len_available() (circuitpython_nrf24l01.fake_ble.FakeBLE method)


      	listen (circuitpython_nrf24l01.rf24.RF24 attribute)


  

  	
      	load_ack() (circuitpython_nrf24l01.rf24.RF24 method)


      	load_dhcp() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	lookup_address() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	lookup_node_id() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


  





M


  	
      	mac (circuitpython_nrf24l01.fake_ble.FakeBLE attribute)

      
        	(circuitpython_nrf24l01.fake_ble.QueueElement attribute)


      


      	MAX_FRAG_SIZE (in module circuitpython_nrf24l01.network.constants)


      	max_message_length (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	max_queue_size (circuitpython_nrf24l01.network.structs.FrameQueue attribute)


      	MAX_USR_DEF_MSG_TYPE (in module circuitpython_nrf24l01.network.constants)


      	MESH_ADDR_LOOKUP (in module circuitpython_nrf24l01.network.constants)


      	MESH_ADDR_RELEASE (in module circuitpython_nrf24l01.network.constants)


      	MESH_ADDR_REQUEST (in module circuitpython_nrf24l01.network.constants)


      	MESH_ADDR_RESPONSE (in module circuitpython_nrf24l01.network.constants)


      	MESH_ID_LOOKUP (in module circuitpython_nrf24l01.network.constants)


  

  	
      	MESH_LOOKUP_TIMEOUT (in module circuitpython_nrf24l01.network.constants)


      	MESH_MAX_CHILDREN (in module circuitpython_nrf24l01.network.constants)


      	MESH_MAX_POLL (in module circuitpython_nrf24l01.network.constants)


      	MESH_WRITE_TIMEOUT (in module circuitpython_nrf24l01.network.constants)


      	message (circuitpython_nrf24l01.network.structs.RF24NetworkFrame attribute)


      	message_type (circuitpython_nrf24l01.network.structs.RF24NetworkHeader attribute)


      	MSG_FRAG_FIRST (in module circuitpython_nrf24l01.network.constants)


      	MSG_FRAG_LAST (in module circuitpython_nrf24l01.network.constants)


      	MSG_FRAG_MORE (in module circuitpython_nrf24l01.network.constants)


      	multicast() (circuitpython_nrf24l01.rf24_network.RF24Network method)


      	multicast_level (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	multicast_relay (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


  





N


  	
      	name (circuitpython_nrf24l01.fake_ble.FakeBLE attribute)

      
        	(circuitpython_nrf24l01.fake_ble.QueueElement attribute)


      


      	NETWORK_ACK (in module circuitpython_nrf24l01.network.constants)


      	NETWORK_DEFAULT_ADDR (in module circuitpython_nrf24l01.network.constants)


      	NETWORK_EXT_DATA (in module circuitpython_nrf24l01.network.constants)


  

  	
      	NETWORK_MULTICAST_ADDR (in module circuitpython_nrf24l01.network.constants)


      	NETWORK_PING (in module circuitpython_nrf24l01.network.constants)


      	NETWORK_POLL (in module circuitpython_nrf24l01.network.constants)


      	node_address (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	node_id (circuitpython_nrf24l01.rf24_mesh.RF24Mesh attribute)


  





O


  	
      	open_rx_pipe() (circuitpython_nrf24l01.rf24.RF24 method)


  

  	
      	open_tx_pipe() (circuitpython_nrf24l01.rf24.RF24 method)


  





P


  	
      	pa_level (circuitpython_nrf24l01.fake_ble.QueueElement attribute)

      
        	(circuitpython_nrf24l01.rf24.RF24 attribute)


      


      	pa_level_at_1_meter (circuitpython_nrf24l01.fake_ble.UrlServiceData property)


      	pack() (circuitpython_nrf24l01.network.structs.RF24NetworkFrame method)

      
        	(circuitpython_nrf24l01.network.structs.RF24NetworkHeader method)


      


      	parent (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


  

  	
      	payload_length (circuitpython_nrf24l01.rf24.RF24 attribute)


      	peek() (circuitpython_nrf24l01.network.structs.FrameQueue method)

      
        	(circuitpython_nrf24l01.rf24_network.RF24Network method)


      


      	pipe (circuitpython_nrf24l01.rf24.RF24 attribute)


      	power (circuitpython_nrf24l01.rf24.RF24 attribute)


      	print_details() (circuitpython_nrf24l01.rf24.RF24 method)


      	print_pipes() (circuitpython_nrf24l01.rf24.RF24 method)


  





Q


  	
      	queue (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


  

  	
      	QueueElement (class in circuitpython_nrf24l01.fake_ble)


  





R


  	
      	read() (circuitpython_nrf24l01.fake_ble.FakeBLE method)

      
        	(circuitpython_nrf24l01.rf24.RF24 method)


        	(circuitpython_nrf24l01.rf24_network.RF24Network method)


      


      	release_address() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	renew_address() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	resend() (circuitpython_nrf24l01.rf24.RF24 method)


      	reserved (circuitpython_nrf24l01.network.structs.RF24NetworkHeader attribute)


      	ret_sys_msg (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	reverse_bits() (in module circuitpython_nrf24l01.fake_ble)


      	RF24 (class in circuitpython_nrf24l01.rf24)


  

  	
      	RF24Mesh (class in circuitpython_nrf24l01.rf24_mesh)


      	RF24MeshNoMaster (class in circuitpython_nrf24l01.rf24_mesh)


      	RF24Network (class in circuitpython_nrf24l01.rf24_network)


      	RF24NetworkFrame (class in circuitpython_nrf24l01.network.structs)


      	RF24NetworkHeader (class in circuitpython_nrf24l01.network.structs)


      	RF24NetworkRoutingOnly (class in circuitpython_nrf24l01.rf24_network)


      	route_timeout (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


      	rpd (circuitpython_nrf24l01.rf24.RF24 attribute)


      	rx_cache (circuitpython_nrf24l01.fake_ble.FakeBLE attribute)


      	rx_queue (circuitpython_nrf24l01.fake_ble.FakeBLE attribute)


  





S


  	
      	save_dhcp() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	send() (circuitpython_nrf24l01.rf24.RF24 method)

      
        	(circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


        	(circuitpython_nrf24l01.rf24_network.RF24Network method)


      


      	ServiceData (class in circuitpython_nrf24l01.fake_ble)


      	set_address() (circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


      	set_auto_ack() (circuitpython_nrf24l01.rf24.RF24 method)


  

  	
      	set_auto_retries() (circuitpython_nrf24l01.rf24.RF24 method)


      	set_dynamic_payloads() (circuitpython_nrf24l01.rf24.RF24 method)


      	set_payload_length() (circuitpython_nrf24l01.rf24.RF24 method)


      	show_pa_level (circuitpython_nrf24l01.fake_ble.FakeBLE attribute)


      	start_carrier_wave() (circuitpython_nrf24l01.rf24.RF24 method)


      	stop_carrier_wave() (circuitpython_nrf24l01.rf24.RF24 method)


      	swap_bits() (in module circuitpython_nrf24l01.fake_ble)


  





T


  	
      	TEMPERATURE_UUID (in module circuitpython_nrf24l01.fake_ble)


      	TemperatureServiceData (class in circuitpython_nrf24l01.fake_ble)


      	to_node (circuitpython_nrf24l01.network.structs.RF24NetworkHeader attribute)


      	to_string() (circuitpython_nrf24l01.network.structs.RF24NetworkHeader method)


      	tx_full (circuitpython_nrf24l01.rf24.RF24 attribute)


  

  	
      	TX_LOGICAL (in module circuitpython_nrf24l01.network.constants)


      	TX_MULTICAST (in module circuitpython_nrf24l01.network.constants)


      	TX_NORMAL (in module circuitpython_nrf24l01.network.constants)


      	TX_PHYSICAL (in module circuitpython_nrf24l01.network.constants)


      	TX_ROUTED (in module circuitpython_nrf24l01.network.constants)


      	tx_timeout (circuitpython_nrf24l01.rf24_network.RF24Network attribute)


  





U


  	
      	unpack() (circuitpython_nrf24l01.network.structs.RF24NetworkFrame method)

      
        	(circuitpython_nrf24l01.network.structs.RF24NetworkHeader method)


      


      	update() (circuitpython_nrf24l01.rf24.RF24 method)

      
        	(circuitpython_nrf24l01.rf24_network.RF24Network method)


      


  

  	
      	UrlServiceData (class in circuitpython_nrf24l01.fake_ble)


      	uuid (circuitpython_nrf24l01.fake_ble.ServiceData property)


  





W


  	
      	whiten() (circuitpython_nrf24l01.fake_ble.FakeBLE method)


      	whitener() (in module circuitpython_nrf24l01.fake_ble)


  

  	
      	write() (circuitpython_nrf24l01.rf24.RF24 method)

      
        	(circuitpython_nrf24l01.rf24_mesh.RF24Mesh method)


        	(circuitpython_nrf24l01.rf24_network.RF24Network method)


      


  







            

          

      

      

    

  _static/Logo large.png
Uy





_static/plus.png





_static/file.png





_static/minus.png





_images/graphviz-42d04a14a791487916841fdc1d780966bfcb68e3.png
I DD
D CD DD

Legend

Network Level 0 D

Network Level 1 C)
Network Level 2 @

Network Level 3 D
Network Level 4 C}

Nodes are labeled
in octal numbers






_images/graphviz-6db4f64d1595d077240e6337985eaf0d55b206f1.png
005414





_images/graphviz-39d1e9d74ccc0aa218952aaa49f1113e783a7b58.png
circuitpython_nrf24101.rf24

circuitpython_nrf24101.network.mixins

RF24NetworkRoutingOnly RF24MeshNoMaster

RF24Network

circuitpython_nrf24101.rf24_network circuitpython_nrf24101.rf24_mesh






nav.xhtml

    
      Table of Contents


      
        		
          Getting Started
        


      


    
  

_images/198c91ca675849ebacbcb17285f0b2dd7ea32d3c.png
g

ENGINEERS com

Last Minute

Pinout

nRF24L01+





